Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 850, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039539

RESUMO

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa. Although prior work has focused on a prominent role for IRGM/Irgm1 in regulating macrophage function, the work described here addresses a potential role of Irgm1 in regulating the function of mature T cells. Irgm1 was found to be highly expressed in T cells in a manner that varied with the particular T cell subset and increased with activation. Mice with a complete lack of Irgm1, or a conditional lack of Irgm1 specifically in T cells, displayed numerous changes in T cell numbers and function in all subsets examined, including CD4+ (Th1 and Treg) and CD8+ T cells. Related to changes in T cell number, apoptosis was found to be increased in Irgm1-deficient CD4+ and CD8+ T cells. Altered T cell metabolism appeared to be a key driver of the phenotypes: Glucose metabolism and glycolysis were increased in Irgm1-deficient CD4+ and CD8+ T cells, and muting these effects with glycolytic inhibitors partially restored T cell function and viability.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/fisiologia , Animais , Apoptose/genética , Autofagia/genética , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Cultivadas , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Glucose/metabolismo , Glicólise , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia
3.
Infect Immun ; 89(11): e0020221, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338548

RESUMO

Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Toxoplasmose/imunologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/fisiologia , Ubiquitina/fisiologia , Vacúolos/fisiologia
4.
Front Immunol ; 12: 661290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995384

RESUMO

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Assuntos
Colo/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Colo/citologia , Colo/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Expressão Gênica/imunologia , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Intestino Delgado/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Fagócitos/metabolismo , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Células Th17/metabolismo
5.
Respir Res ; 21(1): 304, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213478

RESUMO

BACKGROUND: Multiple classes of oral therapy are available for the treatment of pulmonary arterial hypertension (PAH), but there is little to guide clinicians in choosing a specific regimen or therapeutic class. We aimed to investigate whether treatment-relevant blood biomarkers can predict therapy response in prevalent PAH patients. METHODS: This prospective cohort study longitudinally assessed biomarkers along the endothelin-1 (ET-1) and nitric oxide (cGMP, ADMA, SDMA, nitrite, and S-nitrosohemoglobin) pathways along with the cGMP/NT-proBNP ratio over 12 months in patients with WHO Group 1 PAH on oral PAH-specific therapies. The relationship between biomarkers and 6MWD at the same and future visits was examined using mixed linear regression models adjusted for age. As cGMP can be elevated when NT-proBNP is elevated, we also tested the relationship between 6MWD and the cGMP/NT-pro BNP ratio. Patients with PAH with concomitant heart or lung disease or chronic thromboembolic pulmonary hypertension (CTEPH) were included in a sensitivity analysis. RESULTS: The study cohort included 58 patients with PAH treated with either an endothelin receptor antagonist (27.6%), phosphodiesterase-5 inhibitor (25.9%) or a combination of the two (43.1%). Among biomarkers along the current therapeutic pathways, ET-1 and the cGMP/NT-proBNP ratio associated with same visit 6MWD (p = 0.02 and p = 0.03 respectively), and ET-1 predicted future 6MWD (p = 0.02). ET-1 (p = 0.01) and cGMP/NT-proBNP ratio (p = 0.04) also predicted future 6MWD in the larger cohort (n = 108) of PAH patients with concomitant left heart disease (n = 17), lung disease (n = 20), or CTEPH (n = 13). Finally, in the larger cohort, SDMA associated with 6MWD at the same visit (p = 0.01) in all subgroups and ADMA associated with 6MWD in PAH patients with concomitant lung disease (p = 0.03) and PAH patients on ERA therapy (p = 0.01). CONCLUSIONS: ET-1, cGMP/NTproBNP ratio, and dimethylarginines ADMA and SDMA are mediators along pathways targeted by oral PAH therapies that associate with or predict 6MWD.


Assuntos
Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/tratamento farmacológico , Inibidores da Fosfodiesterase 5/administração & dosagem , Administração Oral , Idoso , Biomarcadores/sangue , Endotelina-1/sangue , Feminino , Humanos , Hipertensão Pulmonar/diagnóstico , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Estudos Prospectivos , Resultado do Tratamento
6.
PLoS Pathog ; 16(5): e1008553, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453761

RESUMO

IRGM and its mouse orthologue Irgm1 are dynamin-like proteins that regulate vesicular remodeling, intracellular microbial killing, and pathogen immunity. IRGM dysfunction is linked to inflammatory bowel disease (IBD), and while it is thought that defective intracellular killing of microbes underscores IBD susceptibility, studies have yet to address how IRGM/Irgm1 regulates immunity to microbes relevant to intestinal inflammation. Here we find that loss of Irgm1 confers marked susceptibility to Citrobacter rodentium, a noninvasive intestinal pathogen that models inflammatory responses to intestinal bacteria. Irgm1-deficient mice fail to control C. rodentium outgrowth in the intestine, leading to systemic pathogen spread and host mortality. Surprisingly, susceptibility due to loss of Irgm1 function was not linked to defective intracellular killing of C. rodentium or exaggerated inflammation, but was instead linked to failure to remodel specific colon lamina propria (C-LP) myeloid cells that expand in response to C. rodentium infection and are essential for C. rodentium immunity. Defective immune remodeling was most striking in C-LP monocytes, which were successfully recruited to the infected C-LP, but subsequently underwent apoptosis. Apoptotic susceptibility was induced by C. rodentium infection and was specific to this setting of pathogen infection, and was not apparent in other settings of intestinal inflammation. These studies reveal a novel role for Irgm1 in host defense and suggest that deficiencies in survival and remodeling of C-LP myeloid cells that control inflammatory intestinal bacteria may underpin IBD pathogenesis linked to IRGM dysfunction.


Assuntos
Citrobacter rodentium/imunologia , Colo/imunologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Ligação ao GTP/deficiência , Doenças Inflamatórias Intestinais/imunologia , Monócitos/imunologia , Animais , Colo/microbiologia , Colo/patologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/patologia , Proteínas de Ligação ao GTP/imunologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , Monócitos/microbiologia , Monócitos/patologia , Mucosa/imunologia , Mucosa/microbiologia , Mucosa/patologia
7.
Dis Model Mech ; 11(2)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29361512

RESUMO

Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM) is an established risk allele in CD. We have shown previously that conventionally raised (CV) mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1-/- mice were rederived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1-/- mice. Remarkably, in contrast to CV mice, SPF Irgm1-/- mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1-/- mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1-/- mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1-/- mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1-/- mice as a model to elucidate host-environment interactions that regulate mucosal homeostasis and intestinal inflammatory responses. Defining such interactions will be essential for developing novel preventative and therapeutic strategies for human CD.


Assuntos
Meio Ambiente , Proteínas de Ligação ao GTP/deficiência , Inflamação/patologia , Intestinos/patologia , Celulas de Paneth/patologia , Animais , Biodiversidade , Proliferação de Células , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Suscetibilidade a Doenças , Células Epiteliais/patologia , Proteínas de Ligação ao GTP/metabolismo , Microbioma Gastrointestinal , Genótipo , Células Caliciformes/patologia , Helicobacter/fisiologia , Inflamação/microbiologia , Intestinos/microbiologia , Camundongos Knockout , Celulas de Paneth/metabolismo , Fenótipo , Organismos Livres de Patógenos Específicos
8.
J Biol Chem ; 292(11): 4651-4662, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154172

RESUMO

The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear. In the studies reported here, we found that uninfected Irgm1-deficient mice displayed high levels of serum cytokines typifying profound autoinflammation. Similar increases in cytokine production were also seen in cultured, IFN-γ-primed macrophages that lacked Irgm1. A series of metabolic studies indicated that the enhanced cytokine production was associated with marked metabolic changes in the Irgm1-deficient macrophages, including increased glycolysis and an accumulation of long chain acylcarnitines. Cells were exposed to the glycolytic inhibitor, 2-deoxyglucose, or fatty acid synthase inhibitors to perturb the metabolic alterations, which resulted in dampening of the excessive cytokine production. These results suggest that Irgm1 deficiency drives metabolic dysfunction in macrophages in a manner that is cell-autonomous and independent of infectious triggers. This may be a significant contributor to excessive inflammation seen in Irgm1-deficient mice in different contexts.


Assuntos
Citocinas/imunologia , Proteínas de Ligação ao GTP/genética , Macrófagos/imunologia , Animais , Autofagia , Células Cultivadas , Proteínas de Ligação ao GTP/imunologia , Deleção de Genes , Glicólise , Inflamação/genética , Inflamação/imunologia , Interferon gama/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos
9.
Eur J Clin Invest ; 45(3): 237-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25641074

RESUMO

BACKGROUND: Regular gall bladder contraction reduces bile stasis and prevents gallstone formation. Intraduodenal administration of exogenous pancreatic secretory trypsin inhibitor-I (PSTI-I, also known as monitor peptide) causes cholecystokinin (CCK) secretion. DESIGN: We proposed that stimulation of CCK release by PSTI would produce gall bladder contraction and prevent gallstones in mice fed a lithogenic diet. Therefore, we tested the effect of overexpression of rat PSTI-I in pancreatic acinar cells on plasma CCK levels and gall bladder function in a transgenic mouse line (TgN[Psti1]; known hereafter as PSTI-I tg). RESULTS: Importantly, PSTI tg mice had elevated fasting and fed plasma CCK levels compared to wild-type (WT) mice. Only mice fed the lithogenic diet developed gallstones. Both fasting and stimulated plasma CCK levels were substantially reduced in both WT and PSTI-I tg mice on the lithogenic diet. Moreover, despite higher CCK levels PSTI-I tg animals developed more gallstones than WT animals. CONCLUSIONS: Together with the previously observed decrease in CCK-stimulated gall bladder emptying in mice fed a lithogenic diet, our findings suggest that a lithogenic diet causes gallstone formation by impaired CCK secretion in addition to reduced gall bladder sensitivity to CCK.


Assuntos
Colecistocinina/metabolismo , Cálculos Biliares/prevenção & controle , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Acinares/metabolismo , Animais , Colecistite/patologia , Dieta , Vesícula Biliar/patologia , Esvaziamento da Vesícula Biliar/fisiologia , Cálculos Biliares/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/fisiologia , Pâncreas/citologia , Ratos , Inibidor da Tripsina Pancreática de Kazal
10.
Int J Oncol ; 45(1): 13-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807315

RESUMO

In a broad range of human cancers 1p36 has been a mutational hotspot which strongly suggests that the loss of tumor suppressor activity maps to this genomic region during tumorigenesis. Adherens junctional associated protein-1 (AJAP1; also known as Shrew1) was initially discovered as a novel transmembrane protein of adherent junctions in epithelial cells. Gene profiling showed AJAP1 on 1p36 is frequently lost or epigenetically silenced. AJAP1 may affect cell motility, migration, invasion and proliferation by unclear mechanisms. AJAP1 may be translocated to the nucleus, via its interaction with ß-catenin complexes, where it can regulate gene transcription, then possibly have a potent impact on cell cycling and apoptosis. Significantly, loss of AJAP1 expression predicts poor clinical outcome of patients with malignant gliomas such as GBM and it may serve as a promising tumor suppressor-related target. In this review, we summarize and discuss current knowledge that may identify AJAP1 as a tumor suppressor in gliomas.


Assuntos
Moléculas de Adesão Celular/genética , Glioma/genética , Glioma/patologia , Moléculas de Adesão Celular/metabolismo , Cromossomos Humanos Par 1/metabolismo , Epigênese Genética , Deleção de Genes , Inativação Gênica , Humanos , Mutação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Int J Oncol ; 44(4): 1243-51, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481586

RESUMO

Previous studies identified the frequent loss of adherens junction-associated protein 1 (AJAP1) expression in glioblastoma (GBM) and its correlation with worse survival. AJAP1 may suppress glioma cell migration, which plays an important role in tumor progression in malignant gliomas such as GBM. However, the role of AJAP1 in cell cycle arrest or apoptosis and resistance to chemotherapy remains unclear. Based on microarray screening results, quantitative PCR and luciferase plasmid reporter constructs were used to evaluate the possible regulatory role of AJAP1 on MAGEA2 expression and function. Cell death assays, TUNEL and other markers of apoptosis were utilized to detect cell apoptosis. Restoration of AJAP1 expression in glioma cells was analyzed after temozolomide exposure. AJAP1 suppressed the expression of MAGEA2 and inhibited the transcriptional activity of MAGEA2 in glioma cells. As AJAP1 expression decreased MAGEA2 protein expression apoptosis increased moderately. Consistent with increased cell death, the induced loss of MAGEA2 expression correlated with increased caspase 3/7 activity, BCL2/BAX ratio and TUNEL signal. AJAP1 expression enhanced cell death in the presence of temozolomide. This study suggests AJAP1 may also function as a pro-apoptotic factor and potentiate cell death by temozolomide in glioma cells. This effect may be partially explained by AJAP1-mediated gene regulation of MAGEA2.


Assuntos
Apoptose/genética , Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular/genética , Glioblastoma/patologia , Antígenos Específicos de Melanoma/biossíntese , Proteínas de Neoplasias/biossíntese , Junções Aderentes , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Caspase 3/metabolismo , Caspase 7/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Temozolomida , Transcrição Gênica , Proteína Supressora de Tumor p53/biossíntese , Proteína X Associada a bcl-2/biossíntese
12.
CNS Neurosci Ther ; 20(5): 429-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24483339

RESUMO

AIMS: Down-regulation of AJAP1 in glioblastoma multiforme (GBM) has been reported. However, the expression profiles of AJAP1 in gliomas and the underlying mechanisms of AJAP1 function on invasion are still poorly understood. METHODS: The gene profiles of AJAP1 in glioma patients were studied among four independent cohorts. Confocal imaging was used to analyze the AJAP1 localization. After AJAP1 overexpression in GBM cell lines, cellular polarity, cytoskeleton distribution, and antitumor effect were investigated in vitro and in vivo. RESULTS: AJAP1 expression was significantly decreased in gliomas compared with normal brain in REMBRANDT and CGCA cohorts. Additionally, low AJAP1 expression was associated with worse survival in GBMs in REMBRANDT and TCGA U133A cohorts and was significantly associated with classical and mesenchymal subtypes of GBMs among four cohorts. Confocal imaging indicated AJAP1 localized in cell membranes in low-grade gliomas and AJAP1-overexpressing GBM cells, but difficult to assess in high-grade gliomas due to its absence. AJAP1 overexpression altered the cytoskeleton and cellular polarity in vitro and inhibited the tumor growth in vivo. CONCLUSIONS: AJAP1 is dysregulated at an early stage of gliomagenesis and may suppress glioma cell invasion and proliferation, which suggests that AJAP1 may be a potential diagnostic and prognostic marker for gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular/metabolismo , Citoesqueleto/metabolismo , Glioma/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Estudos de Coortes , Citoesqueleto/ultraestrutura , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Microscopia Confocal , Estadiamento de Neoplasias , Transplante de Neoplasias
13.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G528-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21183662

RESUMO

Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release. However, the cellular mechanism by which amino acids affect CCK secretion is unknown. The Ca(2+)-sensing receptor (CaSR) that was originally identified on parathyroid cells is not only sensitive to extracellular Ca(2+) but is activated by extracellular aromatic amino acids. It has been postulated that this receptor may be involved in gastrointestinal hormone secretion. Using transgenic mice expressing a CCK promoter driven/enhanced green fluorescent protein (GFP) transgene, we have been able to identify and purify viable intestinal CCK cells. Intestinal mucosal CCK cells were enriched >200-fold by fluorescence-activated cell sorting. These cells were then used for real-time PCR identification of CaSR. Immunohistochemical staining with an antibody specific for CaSR confirmed colocalization of CaSR to CCK cells. In isolated CCK cells loaded with a Ca(2+)-sensitive dye, the amino acids phenylalanine and tryptophan, but not nonaromatic amino acids, caused an increase in intracellular Ca(2+) ([Ca(2+)](i)). The increase in [Ca(2+)](i) was blocked by the CaSR inhibitor Calhex 231. Phenylalanine and tryptophan stimulated CCK release from intestinal CCK cells, and this stimulation was also blocked by CaSR inhibition. Electrophysiological recordings from isolated CCK-GFP cells revealed these cells to possess a predominant outwardly rectifying potassium current. Administration of phenylalanine inhibited basal K(+) channel activity and caused CCK cell depolarization, consistent with changes necessary for hormone secretion. These findings indicate that amino acids have a direct effect on CCK cells to stimulate CCK release by activating CaSR and suggest that CaSR is the physiological mechanism through which amino acids regulate CCK secretion.


Assuntos
Aminoácidos/metabolismo , Colecistocinina/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Aminoácidos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Colecistocinina/genética , Eletrofisiologia , Citometria de Fluxo , Imuno-Histoquímica , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Potássio/metabolismo , Receptores de Detecção de Cálcio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Am J Physiol Gastrointest Liver Physiol ; 298(4): G518-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20110462

RESUMO

Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1). The mouse has one pancreatic trypsin inhibitor known as SPINK3, and the rat has two trypsin inhibitors commonly known as pancreatic secretory trypsin inhibitors I and II (PSTI-I and -II). Rat PSTI-I is a 61-amino acid protein that shares 65% sequence identity with mouse SPINK3. It was recently demonstrated that mice with genetic deletion of the Spink3 gene (Spink3(-/-)) do not survive beyond 15 days and lack normal pancreata because of pancreatic autophagy. We have shown that targeted transgenic expression of the rat Psti1 gene to acinar cells in mice [TgN(Psti1)] protects mice against caerulein-induced pancreatitis. To determine whether the autophagic phenotype and lethality in Spink3(-/-) mice were due to lack of pancreatic trypsin inhibitor, we conducted breeding studies with Spink3(+/-) heterozygous mice and TgN(Psti1) mice. We observed that, whereas Spink3(+/+), Spink3(+/-), and Spink3(-/-)/TgN(Psti1) mice had similar survival rates, no Spink3(-/-) mice survived longer than 1 wk. The level of expression of SPINK3 protein in acini was reduced in heterozygote mice compared with wild-type mice. Furthermore, endogenous trypsin inhibitor capacity was reduced in the pancreas of heterozygote mice compared with wild-type or knockout mice rescued with the rat Psti1 gene. Surprisingly, the lesser amount of SPINK3 present in the pancreata of heterozygote mice did not predispose animals to increased susceptibility to caerulein-induced acute pancreatitis. We propose that a threshold level of expression is sufficient to protect against pancreatitis.


Assuntos
Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pâncreas/patologia , Pancreatite/genética , Proteínas Secretadas pela Próstata/genética , Transgenes/genética , Sequência de Aminoácidos , Amilases/sangue , Animais , Tamanho Corporal/genética , Ceruletídeo/farmacologia , Feminino , Glicoproteínas/metabolismo , Heterozigoto , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Tamanho do Órgão/genética , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas Exócrino/patologia , Pâncreas Exócrino/ultraestrutura , Pancreatite/induzido quimicamente , Pancreatite/patologia , Proteínas Secretadas pela Próstata/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Taxa de Sobrevida , Tripsina/metabolismo , Inibidor da Tripsina Pancreática de Kazal
15.
Mol Cancer Ther ; 6(9): 2449-57, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17766837

RESUMO

Monotherapies have proven largely ineffective for the treatment of glioblastomas, suggesting that increased patient benefit may be achieved by combining therapies. Two protumorigenic pathways known to be active in glioblastoma include RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT/target of rapamycin (TOR). We investigated the efficacy of a combination of novel low molecular weight inhibitors LBT613 and RAD001 (everolimus), which were designed to target RAF and TOR, respectively. LBT613 decreased phosphorylation of extracellular signal-regulated kinase 1 and 2, downstream effectors of RAF, in a human glioma cell line. RAD001 resulted in decreased phosphorylation of the TOR effector S6. To determine if targeting RAF and TOR activities could result in decreased protumorigenic glioma cellular behaviors, we evaluated the abilities of LBT613 and RAD001 to affect the proliferation, migration, and invasion of human glioma cells. Treatment with either LBT613 or RAD001 alone significantly decreased the proliferation of multiple human glioma cell lines. Furthermore, LBT613 and RAD001 in combination synergized to decrease glioma cell proliferation in association with G(1) cell cycle arrest. Glioma invasion is a critical contributor to tumor malignancy. The combination of LBT613 and RAD001 inhibited the invasion of human glioma cells through Matrigel to a greater degree than treatment with either drug alone. These data suggest that the combination of LBT613 and RAD001 reduces glioma cell proliferation and invasion and support examination of the combination of RAF and TOR inhibitors for the treatment of human glioblastoma patients.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glioma/patologia , Imunossupressores/uso terapêutico , Isoquinolinas/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Sirolimo/análogos & derivados , Quinases raf/antagonistas & inibidores , Anexina A5/metabolismo , Western Blotting , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Replicação do DNA/efeitos dos fármacos , Combinação de Medicamentos , Quimioterapia Combinada , Everolimo , Citometria de Fluxo , Glioma/tratamento farmacológico , Humanos , Laminina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteoglicanas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR , Quinases raf/metabolismo
16.
Virology ; 302(1): 185-94, 2002 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12429527

RESUMO

The mouse mammary tumor virus (MMTV) promoter contains an element near its transcription initiation site that is recognized by a protein termed initiation site binding protein (ISBP). Spacing between the TATA box and the ISBP site is important for MMTV promoter function, as altered spacing results in heterogeneity in start site selection in vitro and in vivo. The sequence of the ISBP site is related to initiator elements common in many RNA polymerase II promoters. However, binding of partially purified ISBP to several promoters that contain well-characterized initiator elements was not detected; these promoters included binding sites for a number of previously identified initiator-binding proteins. Partially purified ISBP did, however, bind with high affinity to sequences near the initiation sites of the SV40 major late and adenovirus 2 E1B promoters.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Bovinos , DNA Viral , Camundongos , Dados de Sequência Molecular , Mutagênese , TATA Box , Sítio de Iniciação de Transcrição
17.
Gene ; 285(1-2): 221-8, 2002 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12039049

RESUMO

The Drosophila eyes absent (eya) gene has a role in regulating cell death and/or differentiation and is expressed throughout development. We evaluated the transcripts and proteins encoded by one of the human homologues of Drosophila eya coined Eyes Absent 2 (EYA2). Interestingly, EYA2 was expressed in several neuroblastoma cell lines as four distinct transcripts having alternative 5'-ends, whereas only one EYA2 transcript was expressed in the normal human eye. Due to different translation start sites on the four unique transcripts, two isoforms of EYA2 protein (one previously identified and one novel) could be generated in neuroblastoma cells, but the sole EYA2 transcript expressed in the eye can only encode the novel isoform. Immunoblot analyses suggest that EYA2 may also be post-translationally modified. Finally, the alternative EYA2 transcripts have dissimilar numbers of upstream open reading frames in their 5'-untranslated regions. Therefore, in addition to encoding alternative isoforms of EYA2, regulation of EYA2 expression appears to involve both transcriptional and translational components.


Assuntos
Olho/metabolismo , Transativadores/genética , Regiões 5' não Traduzidas/genética , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares , Biossíntese de Proteínas/genética , Proteínas Tirosina Fosfatases , Análise de Sequência de DNA , Transcrição Gênica/genética , Células Tumorais Cultivadas
18.
J Biol Chem ; 277(5): 3560-7, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11700312

RESUMO

Genetic studies in Drosophila and mice have shown that eyes absent (eya) is an important and conserved transcriptional regulator of development. Along with eyeless/Pax6, sine oculis, and dachshund, eya genes function as master regulators in eye development and can induce ectopic eye formation. Furthermore, the loss-of-function mutants of these genes in the fly causes partial or complete loss of the compound eye, and this is associated with inappropriate apoptosis. Conversely, ectopic eyeless expression in the context of eyes absent or sine oculis mutations results in apoptosis, suggesting that the proper ratio of these factors regulates apoptosis. Here we report that enforced expression of fly eya or of one of its mammalian homologs, Eya2, triggers rapid apoptosis in interleukin-3-dependent 32D.3 murine myeloid cells, which express Eya family members but not Pax6. Eya-induced cell death overrides survival factors and has many features typical of apoptosis, including plasma and mitochondrial membrane changes and caspase activation. Eya-induced apoptosis is blocked by Bcl-2 overexpression but not by the broad-spectrum caspase inhibitor z-VAD.fmk, suggesting that mitochondria are a major target in Eya-induced apoptosis. These results support the concept that inappropriate changes in the steady state levels of Eya proteins may trigger programmed cell deaths during development.


Assuntos
Apoptose , Proteínas de Drosophila , Proteínas do Olho/genética , Olho/embriologia , Animais , Apoptose/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Membrana Celular/fisiologia , Sobrevivência Celular/fisiologia , Clonagem Molecular , Primers do DNA , Dexametasona/farmacologia , Drosophila/embriologia , Embrião de Mamíferos , Embrião não Mamífero , Etiquetas de Sequências Expressas , Olho/citologia , Humanos , Potenciais da Membrana , Camundongos , Microscopia Confocal , Mitocôndrias/fisiologia , Mutação , Proteínas Nucleares/genética , Oligodesoxirribonucleotídeos Antissenso , Proteínas Proto-Oncogênicas c-bcl-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA