Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone ; 183: 117085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522809

RESUMO

Overgrowth and intellectual disability disorders in humans are typified by length/height and/or head circumference ≥ 2 standard deviations above the mean as well as intellectual disability and behavioral comorbidities, including autism and anxiety. Tatton-Brown-Rahman Syndrome is one type of overgrowth and intellectual disability disorder caused by heterozygous missense mutations in the DNA methyltransferase 3A (DNMT3A) gene. Numerous DNMT3A mutations have been identified in Tatton-Brown-Rahman Syndrome patients and may be associated with varying phenotype severities of clinical presentation. Two such mutations are the R882H and P904L mutations which result in severe and mild phenotypes, respectively. Mice with paralogous mutations (Dnmt3aP900L/+ and Dnmt3aR878H/+) exhibit overgrowth in their long bones (e.g., femur, humerus), but the mechanisms responsible for their skeletal overgrowth remain unknown. The goal of this study is to characterize skeletal phenotypes in mouse models of Tatton-Brown-Rahman Syndrome and identify potential cellular mechanisms involved in the skeletal overgrowth phenotype. We report that mature mice with the Dnmt3aP900L/+ or Dnmt3aR878H/+ mutation exhibit tibial overgrowth, cortical bone thinning, and weakened bone mechanical properties. Dnmt3aR878H/+ mutants also contain larger bone marrow adipocytes while Dnmt3aP900L/+ mutants show no adipocyte phenotype compared to control animals. To understand the potential cellular mechanisms regulating these phenotypes, growth plate chondrocytes, osteoblasts, and osteoclasts were assessed in juvenile mutant mice using quantitative static histomorphometry and dynamic histomorphometry. Tibial growth plates appeared thicker in mutant juvenile mice, but no changes were observed in osteoblast activity or osteoclast number in the femoral mid-diaphysis. These studies reveal new skeletal phenotypes associated with Tatton-Brown-Rahman Syndrome in mice and provide a rationale to extend clinical assessments of patients with this condition to include bone density and quality testing. These findings may be also informative for skeletal characterization of other mouse models presenting with overgrowth and intellectual disability phenotypes.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Humanos , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , DNA Metiltransferase 3A , Anormalidades Múltiplas/genética , Mutação
2.
J Am Chem Soc ; 139(43): 15324-15327, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028321

RESUMO

Allylboronic esters react readily with carbonyls and imines (π-electrophiles), but are unreactive toward a range of other electrophiles. By addition of an aryllithium, the corresponding allylboronate complexes display enhanced nucleophilicity, enabling addition to a range of electrophiles (tropylium, benzodithiolylium, activated pyridines, Eschenmoser's salt, Togni's reagent, Selectfluor, diisopropyl azodicarboxylate (DIAD), MeSX) in high regio- and stereocontrol. This protocol provides access to key new functionalities, including quaternary stereogenic centers bearing moieties such as fluorine and the trifluoromethyl group. The allylboronate complexes were determined to be 7 to 10 orders of magnitude more reactive than the parent boronic ester.

3.
Org Lett ; 17(11): 2614-7, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25973673

RESUMO

Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA