Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38346534

RESUMO

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Assuntos
Acidose Respiratória , Braquiúros , Decápodes , Animais , Hipercapnia/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Octopamina/metabolismo , Acidose Respiratória/metabolismo , Braquiúros/fisiologia , Brânquias/metabolismo
2.
Acta Physiol (Oxf) ; 240(2): e14078, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38205922

RESUMO

AIM: To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS: Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS: Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION: CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.


Assuntos
Amônia , Dióxido de Carbono , Animais , Humanos , Dióxido de Carbono/metabolismo , Amônia/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Aminoácidos , Metilaminas
3.
J Comp Physiol B ; 193(5): 509-522, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563322

RESUMO

Crustaceans' endocrinology is a vastly understudied area of research. The major focus of the studies on this topic to date has been on the molting cycle (and in particular, the role of crustacean hyperglycemic hormone (CHH)), as well as the role of other hormones in facilitating physiological phenotypic adjustments to salinity changes. Additionally, while many recent studies have been conducted on the acclimation and adaptation capacity of crustaceans to a changing environment, only few have investigated internal hormonal balance especially with respect to an endocrine response to environmental challenges. Consequently, our study aimed to identify and characterize endocrine components of acid-base regulation in the European green crab, Carcinus maenas. We show that both the biogenic amine octopamine (OCT) and the CHH are regulatory components of branchial acid-base regulation. While OCT suppressed branchial proton excretion, CHH seemed to promote it. Both hormones were also capable of enhancing branchial ammonia excretion. Furthermore, mRNA abundance for branchial receptors (OCT-R), or G-protein receptor activated soluble guanylate cyclase (sGC1b), are affected by environmental change such as elevated pCO2 (hypercapnia) and high environmental ammonia (HEA). Our findings support a role for both OCT and CHH in the general maintenance of steady-state acid-base maintenance in the gill, as well as regulating the acid-base response to environmental challenges that C. maenas encounters on a regular basis in the habitats it dwells in and more so in the future ocean.


Assuntos
Braquiúros , Hormônios de Invertebrado , Animais , Braquiúros/fisiologia , Octopamina , Amônia , Proteínas de Artrópodes
4.
Sci Rep ; 13(1): 4416, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932112

RESUMO

The orphan transporter hippocampus-abundant transcript 1 (Hiat1) was first identified in the mammalian brain. Its specific substrate specificity, however, has not been investigated to date. Here, we identified and analyzed Hiat1 in a crustacean, the green crab Carcinus maenas. Our phylogenetic analysis showed that Hiat1 protein is conserved at a considerable level between mammals and this invertebrate (ca. 78% identical and conserved amino acids). Functional expression of Carcinus maenas Hiat1 in Xenopus laevis oocytes demonstrated the capability to transport ammonia (likely NH4+) in a sodium-dependent manner. Furthermore, applying quantitative polymerase chain reaction, our results indicated a physiological role for Carcinus maenas Hiat1 in ammonia homeostasis, as mRNA abundance increased in posterior gills in response to elevated circulating hemolymph ammonia upon exposure to high environmental ammonia. Its ubiquitous mRNA expression pattern also suggests an essential role in general cellular detoxification of ammonia. Overall, our results introduce a new ubiquitously expressed ammonia transporter, consequently demanding revision of our understanding of ammonia handling in key model systems from mammalian kidneys to crustacean and fish gills.


Assuntos
Amônia , Braquiúros , Animais , Amônia/metabolismo , Filogenia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Brânquias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Braquiúros/genética , Mamíferos/metabolismo
5.
J Exp Biol ; 225(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36124551

RESUMO

Ammonia excretion in fish excretory epithelia is a complex interplay of multiple membrane transport proteins and mechanisms. Using the model system of zebrafish (Danio rerio) larvae, here we identified three paralogues of a novel ammonia transporter, hippocampus-abundant transcript 1 (DrHiat1), also found in most vertebrates. When functionally expressed in Xenopus laevis oocytes, DrHiat1a and DrHiat1b promoted methylamine uptake in a competitive manner with ammonia. In situ hybridization experiments showed that both transporters were expressed as early as the 4-cell stage in zebrafish embryos and could be identified in most tissues 4 days post-fertilization. Larvae experiencing morpholino-mediated knockdown of DrHiat1b exhibited significantly lower whole-body ammonia excretion rates compared with control larvae. Markedly decreased site-specific total ammonia excretion of up to 85% was observed in both the pharyngeal region (site of developing gills) and the yolk sac (region shown to have the highest NH4+ flux). This study is the first to identify DrHiat1b/DrHIAT1 in particular as an important contributor to ammonia excretion in larval zebrafish. Being evolutionarily conserved, these proteins are likely involved in multiple other general ammonia-handling mechanisms, making them worthy candidates for future studies on nitrogen regulation in fishes and across the animal kingdom.


Assuntos
Proteínas de Transporte de Cátions , Peixe-Zebra , Amônia/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Larva/metabolismo , Metilaminas/metabolismo , Morfolinos , Nitrogênio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-32653509

RESUMO

Increasing evidence suggests the involvement of hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) not only in cardiac and neural function, but also in more general physiological processes including acid-base and ammonia regulation. We have identified four different HCN paralogs/isoforms in the goldfish Carassius auratus (CaHCN1, CaHCN2b, CaHCN4a and CaHCN4b) as likely candidates to contribute to renal, branchial and intestinal acid-base and ammonia regulation in this teleost. Quantitative real-time PCR showed not only high mRNA abundance of all isoforms in heart and brain, but also detectable levels (particularly of CaHCN2b and CaHCN4b) in non-excitable tissues, including gills and kidneys. In response to an internal or external acid-base and/or ammonia disturbance caused by feeding or high environmental ammonia, respectively, we observed differential and tissue-specific changes in mRNA abundance of all isoforms except CaHCN4b. Furthermore, our data suggest that the functions of specific HCN channels are supplemented by certain Rhesus glycoprotein functions to help in the protection of tissues from elevated ammonia levels, or as potential direct routes for ammonia transport in gills, kidney, and gut. The present results indicate important individual roles for each HCN isoform in response to acid-base and ammonia disturbances.


Assuntos
Amônia/farmacologia , Carpa Dourada/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Equilíbrio Ácido-Base , Sequência de Aminoácidos , Amônia/farmacocinética , Ração Animal , Animais , Bicarbonatos/farmacologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Carpa Dourada/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Filogenia , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência , Distribuição Tecidual
7.
Respir Physiol Neurobiol ; 275: 103385, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31931176

RESUMO

Ammonia (NH3 + NH4+) is the major nitrogenous waste in teleost fish. NH3 is also the third respiratory gas, playing a role in ventilatory control. However it is also highly toxic. Normally, ammonia excretion through the gills occurs at about the same rate as its metabolic production, but the branchial transport mechanisms have long been controversial. An influential review in this journal has claimed that ammonia excretion in fish is probably limited by diffusion rather than by convection, so that increases in ventilation would have negligible effect on the rate of ammonia excretion. Why then should elevated plasma ammonia stimulate ventilation? The diffusion-limitation argument was made before the discovery of Rhesus (Rh) glycoproteins and the associated metabolon in the gills, which serve to greatly increase branchial ammonia permeability under conditions of ammonia loading. Therefore, we hypothesized here that (i) in accord with the diffusion-limitation concept, changes in ventilation would not affect the rate of ammonia excretion under conditions where branchial Rh metabolon function would be low (resting trout with low plasma ammonia levels). However, we also hypothesized that (ii) in accord with convective limitation, changes in ventilation would influence the rate of ammonia excretion under conditions where diffusion limitation was removed because branchial Rh metabolon function would be high (ammonia-loaded trout with high plasma ammonia levels). We used variations in environmental O2 levels to manipulate ventilation in trout under control or ammonia-loaded conditions - i.e. hyperventilation in moderate hypoxia or hypoventilation in moderate hyperoxia. In accord with hypothesis (i), under resting conditions, ammonia excretion was insensitive to experimentally induced changes in ventilation. Ammonia-loading by NH4HCO3 infusion for 30h + increased the gill mRNA expressions of two key metabolon components (Rhcg2, V-H+-ATPase or HAT), together with a 7.5-fold increase in plasma ammonia concentration and a 3-fold increase in ammonia excretion rate. In accord with hypothesis (ii), in these fish, hypoxia-induced increases in ventilation elevated the ammonia excretion rate and lowered plasma ammonia, while hyperoxia-induced decreases in ventilation reduced the ammonia excretion rate, and elevated plasma ammonia concentration. We conclude that under conditions of natural ammonia loading (e.g. meal digestion, post-exercise recovery), diffusion-limitation is removed by Rh metabolon upregulation, such that the stimulation of ventilation by elevated plasma ammonia can play an important role in clearing the potentially toxic ammonia load.


Assuntos
Amônia/metabolismo , Proteínas de Peixes/metabolismo , Glicoproteínas/metabolismo , Hiperóxia/metabolismo , Hipóxia/metabolismo , Oncorhynchus mykiss/fisiologia , Respiração , Amônia/sangue , Animais , Brânquias/fisiologia , Oncorhynchus mykiss/metabolismo
8.
J Exp Biol ; 222(Pt 13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31138633

RESUMO

A recent study demonstrated that in response to a feeding-induced metabolic acidosis, goldfish (Carassius auratus) adjust epithelial protein and/or mRNA expression in their kidney tubules for multiple transporters known to be relevant for acid-base regulation. These include Na+/H+ exchanger (NHE), V-type H+-ATPase (V-ATPase), cytoplasmic carbonic anhydrase, HCO3- transporters and Rhesus proteins. Consequently, renal acid output in the form of protons and NH4+ increases. However, little is known about the mechanistic details of renal acid-base regulation in C. auratus and teleost fishes in general. The present study applied the scanning ion-selective electrode technique (SIET) to measure proton flux in proximal, distal and connecting tubules of goldfish. We detected increased H+ efflux into the extracellular fluid from the tubule in fed animals, resulting from paracellular back-flux of H+ through the tight junction. By applying inhibitors for selected acid-base regulatory epithelial transporters, we found that cytosolic carbonic anhydrase and HCO3- transporters were important in mediating H+ flux in all three tubule segments of fed goldfish. Contrastingly, V-ATPase seemed to play a role in H+ flux only in proximal and distal tubules, and NHE in proximal and connecting tubules. We developed working models for transport of acid-base relevant equivalents (H+, HCO3-, NH3/NH4+) for each tubule segment in C. auratus kidney. While the proximal tubule appears to play a major role in both H+ secretion and HCO3- reabsorption, the distal and connecting tubules seem to mainly serve for HCO3- reabsorption and NH3/NH4+ secretion.


Assuntos
Jejum , Carpa Dourada/metabolismo , Túbulos Renais/metabolismo , Prótons , Equilíbrio Ácido-Base , Animais , Transporte Biológico , Privação de Alimentos
9.
Am J Physiol Renal Physiol ; 315(6): F1565-F1582, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089033

RESUMO

In teleost fishes, renal contributions to acid-base and ammonia regulation are often neglected compared with the gills. In goldfish, increased renal acid excretion in response to feeding was indicated by increased urine ammonia and inorganic phosphate concentrations and decreased urine pH. By microdissecting the kidney tubules and performing quantitative real-time PCR and/or immunohistochemistry, we profiled the section-specific expression of glutamate dehydrogenase (GDH), glutamine synthetase (GS), Na+/H+-exchanger 3 (NHE3), carbonic anhydrase II (CAIIa), V-H+-ATPase subunit 1b, Cl-/ HCO3- -exchanger 1 (AE1), Na+/ HCO3- -cotransporter 1 (NBC1), Na+/K+-ATPase subunit 1α, and Rhesus-proteins Rhbg, Rhcg1a, and Rhcg1b. Here, we show for the first time that 1) the proximal tubule appears to be the major site for ammoniagenesis, 2) epithelial transporters are differentially expressed along the renal tubule, and 3) a potential feeding-related "acidic tide" results in the differential regulation of epithelial transporters, resembling the mammalian renal response to a metabolic acidosis. Specifically, GDH and NHE3 mRNAs were upregulated and GS downregulated in the proximal tubule upon feeding, suggesting this section as a major site for ammoniagenesis and acid secretion. The distal tubule may play a major role in renal ammonia secretion, with feeding-induced upregulation of mRNA and protein for apical NHE3, cytoplasmic CAIIa, universal Rhcg1a and apical Rhcg1b, and downregulation of basolateral Rhbg and AE1. Changes in mRNA expression of the Wolffian ducts and bladder suggest supporting roles in fine-tuning urine composition. The present study verifies an important renal contribution to acid-base balance and emphasizes that studies looking at the whole kidney may overlook key section-specific responses.


Assuntos
Equilíbrio Ácido-Base , Amônia/metabolismo , Ingestão de Alimentos , Proteínas de Peixes/metabolismo , Carpa Dourada/metabolismo , Túbulos Renais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Equilíbrio Ácido-Base/efeitos dos fármacos , Amônia/urina , Animais , Transporte Biológico , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Carpa Dourada/anatomia & histologia , Carpa Dourada/genética , Túbulos Renais/anatomia & histologia , Proteínas de Membrana Transportadoras/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eliminação Renal , Fatores de Tempo
10.
Aquat Toxicol ; 178: 132-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27486083

RESUMO

Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n=10) were exposed to control (no added Zn) and 50µM (3.25mgL(-1)) of waterborne Zn (∼25% of 96h LC50 in 100 seawater) for 96h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1-4h) branchial Zn uptake over an exposure concentration range of 3-12µM (200-800µgL(-1)). The rate of short-term branchial Zn uptake did not change significantly after 2h, and no difference was recorded in the rate of uptake between the anterior (respiratory) and posterior (ion transporting) gills. The in vitro branchial Zn uptake occurred in a concentration-dependent manner across different salinities. However, the rate of uptake was consistently higher in 20% seawater relative to 60% or 100% seawater - similar to the trend observed with tissue Zn accumulation during in vivo exposure. The short-term branchial Zn uptake was found to be inhibited by lanthanum (a blocker of voltage-independent Ca channels), suggesting that branchial Zn uptake occurs via the Ca transporting pathways, at least in part. Overall, our findings indicate that acute exposure to waterborne Zn leads to the disruption of Zn and Ca homeostasis in green crab, and these effects are exacerbated at the lower salinity.


Assuntos
Braquiúros/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Braquiúros/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Transporte de Íons/efeitos dos fármacos , Masculino , Salinidade , Água do Mar/análise , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA