Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 108(7): 1252-1269, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34287829

RESUMO

PREMISE: The carrot family (Apiaceae) comprises 466 genera, which include many well-known crops (e.g., aniseed, caraway, carrots, celery, coriander, cumin, dill, fennel, parsley, and parsnips). Higher-level phylogenetic relationships among subfamilies, tribes, and other major clades of Apiaceae are not fully resolved. This study aims to address this important knowledge gap. METHODS: Target sequence capture with the universal Angiosperms353 probe set was used to examine phylogenetic relationships in 234 genera of Apiaceae, representing all four currently recognized subfamilies (Apioideae, Azorelloideae, Mackinlayoideae, and Saniculoideae). Recovered nuclear genes were analyzed using both multispecies coalescent and concatenation approaches. RESULTS: We recovered hundreds of nuclear genes even from old and poor-quality herbarium specimens. Of particular note, we placed with strong support three incertae sedis genera (Platysace, Klotzchia, and Hermas); all three occupy isolated positions, with Platysace resolved as sister to all remaining Apiaceae. We placed nine genera (Apodicarpum, Bonannia, Grafia, Haplosciadium, Microsciadium, Physotrichia, Ptychotis, Tricholaser, Xatardia) that have never previously been included in any molecular phylogenetic study. CONCLUSIONS: We provide support for the maintenance of the four existing subfamilies of Apiaceae, while recognizing that Hermas, Klotzschia, and the Platysace clade may each need to be accommodated in additional subfamilies (pending improved sampling). The placement of the currently apioid genus Phlyctidocarpa can be accommodated by the expansion of subfamily Saniculoideae, although adequate morphological synapomorphies for this grouping are yet to be defined. This is the first phylogenetic study of the Apiaceae using high-throughput sequencing methods and represents an unprecedented evolutionary framework for the group.


Assuntos
Apiaceae , Daucus carota , Apiaceae/genética , Evolução Biológica , Núcleo Celular/genética , Daucus carota/genética , Filogenia
2.
Am J Bot ; 108(7): 1217-1233, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105148

RESUMO

PREMISE: Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger-sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here. METHODS: The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent-based species tree analysis that takes incomplete lineage sorting into account; ASTRAL-III, another coalescent-based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups. RESULTS: The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades. CONCLUSIONS: The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent-based processes.


Assuntos
Apiaceae , Teorema de Bayes , Evolução Biológica , Íntrons , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA