Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828438

RESUMO

Contamination of barley by deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, causes considerable financial loss to the grain and malting industries. In this study, two atmospheric cold plasma (ACP) reactors were used to produce plasma-activated water (PAW) bubbles. The potential of PAW bubbles for the steeping of naturally infected barley (NIB) during the malting process was investigated. The PAW bubbles produced by treating water for 30 min using a bubble spark discharge (BSD) at low temperature resulted in the greatest concentration of oxygen-nitrogen reactive species (RONS). This treatment resulted in 57.3% DON degradation compared with 36.9% in the control sample; however, the same treatment reduced germination significantly (p < 0.05). Direct BSD ACP treatment for 20 min at low temperature and indirect treatment for 30 min increased the percentage of germinated rootlets of the seedlings compared with the control. Considering both the DON reduction and germination improvement of barley seeds, continuous jet ACP treatment for 30 min performed better than the other treatments used in this study. At higher temperature of PAW bubbles, the concentration of RONS was significantly (p < 0.05) reduced. Based on quantitative polymerase chain reaction (qPCR) analysis and fungal culture tests, the PAW bubble treatment did not significantly reduce infection of NIB. Nonetheless, this study provides useful information for the malting industry for PAW treatment optimization and its use in barley steeping for DON reduction and germination improvement.


Assuntos
Fusarium , Hordeum , Hordeum/microbiologia , Germinação , Água/farmacologia , Fusarium/metabolismo
2.
Crit Rev Food Sci Nutr ; 62(21): 5903-5924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33729830

RESUMO

Deoxynivalenol (DON) is one of the main trichothecenes, that causes health-related issues in humans and animals and imposes considerable financial loss to the food industry each year. Numerous treatments have been reported in the literature on the degradation of DON in food products. These treatments include thermal, chemical, biological/enzymatic, irradiation, light, ultrasound, ozone, and atmospheric cold plasma treatments. Each of these methods has different degradation efficacy and degrades DON by a distinct mechanism, which leads to various degradation byproducts with different toxicity. This manuscript focuses to review the degradation of DON by the aforementioned treatments, the chemical structure and toxicity of the byproducts, and the degradation pathway of DON. Based on the type of treatment, DON can be degraded to norDONs A-F, DON lactones, and ozonolysis products or transformed into de-epoxy deoxynivalenol, DON-3-glucoside, 3-acetyl-DON, 7-acetyl-DON, 15-acetyl-DON, 3-keto-DON, or 3-epi-DON. DON is a major problem for the grain industry and the studies focusing on DON degradation mechanisms could be helpful to select the best method and overcome the DON contamination in grains.


Assuntos
Contaminação de Alimentos , Ozônio , Grão Comestível/química , Contaminação de Alimentos/análise , Humanos , Tricotecenos
3.
Food Res Int ; 143: 110284, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992384

RESUMO

Phytic acid (PA) is the primary phosphorus reserve in cereals and legumes which serves the biosynthesis needs of growing tissues during germination. It is generally considered to be an anti-nutritional factor found in grains because it can bind to minerals, proteins, and starch, limiting their bioavailability. However, this same mineral binding property can also confer a number of health benefits such as reducing the risk of certain cancers, supporting heart health, and managing renal stones. In addition, the ability of PA to bind minerals allows it to be used in certain food quality applications such as stabilizing the green color of vegetables, preventing lipid peroxidation, and reducing enzymatic browning in fruits/vegetables. These beneficial properties create a potential for added-value applications in the utilization of PA in many new areas. Many possible processing techniques for the preparation of raw materials in the food industry can be used to reduce the concentration of PA in foods to mitigate its anti-nutritional effects. In turn, the recovered PA by-products could be available for novel uses. In this review, a general overview of the beneficial and anti-nutritional effects of PA will be discussed and then dephytinization methods will be explained.


Assuntos
Manipulação de Alimentos , Ácido Fítico , Grão Comestível/química , Minerais/análise , Valor Nutritivo , Ácido Fítico/análise
4.
J Food Sci ; 86(4): 1354-1371, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33682128

RESUMO

Wheat (Triticum aestivum) is susceptible to mycotoxin contamination, which can result in significant health risks and economic losses. This research examined the ability of air atmospheric cold plasma (air-ACP) treatment to reduce pure and spiked T-2 and HT-2 mycotoxins' concentration on wheat grains. This study also evaluated the effect of ACP treatment using different gases on wheat grain germination parameters. The T-2 and HT-2 mycotoxin solutions applied on round cover-glass were placed on microscopy slides and wheat grains (0.5 g) were individually spiked with T-2 and HT-2 on their surfaces. Samples were then dried at room temperature (∼24 °C) and treated by air-ACP for 1 to 10 min. Ten minutes of air-ACP treatment significantly reduced pure T-2 and HT-2 concentrations by 63.63% and 51.5%, respectively. For mycotoxin spiked on wheat grains, 10 min air-ACP treatment significantly decreased T-2 and HT-2 concentrations up to 79.8% and 70.4%, respectively. No significant change in the measured quality and color parameters was observed in the ACP-treated samples. Wheat grain germination parameters were not significantly different, when treated with ACP using different gases. Air-ACP treatment and ACP treatment using 80% nitrogen + 20% oxygen improved the germination of wheat grains by 10% and 6%, respectively. This study demonstrated that ACP is an innovative technology with the potential to improve the safety of wheat grains by reducing T-2/HT-2 mycotoxins with an additional advantage of improving their germination. PRACTICAL APPLICATION: Atmospheric cold plasma (ACP) technology has a huge potential to degrade mycotoxins in food grains. This study evaluated the efficacy of ACP to reduce two major mycotoxins (T-2 and HT-2 toxins) in wheat grains. The results of this study will help to develop and scale-up the ACP technology for mycotoxin degradation in grains.


Assuntos
Descontaminação/métodos , Manipulação de Alimentos/métodos , Germinação , Gases em Plasma/farmacologia , Toxina T-2/análogos & derivados , Toxina T-2/antagonistas & inibidores , Triticum/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Controle de Qualidade , Triticum/efeitos dos fármacos
5.
Crit Rev Food Sci Nutr ; 61(4): 666-689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32208859

RESUMO

Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.


Assuntos
Anti-Infecciosos , Gases em Plasma , Manipulação de Alimentos , Qualidade dos Alimentos , Inocuidade dos Alimentos
6.
J Texture Stud ; 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29417578

RESUMO

This research investigated the effects of two varieties of broken rice (Khouzestan and Lenjan) from warm and dry regions, and two (Hashemi and Tarom) from mild and humid regions on different parameters including dough rheology, digestibility, and quality (color, specific volume, textural properties, and sensorial properties) of a commercial gluten-free bread (GFB). Furthermore, the rice varieties' hydration properties, gelatinization temperatures, and starch-granule morphology were assessed. Significant differences were observed in the varieties' proximate composition and hydration properties from both climate zones. The granules' average size was 3.17-4.9 µm. The specific volume of the breads showed no correlation with either the damaged starch content or the amylose content, but had a significant negative correlation with hardness (r = -.923, p < .05). The crumb hardness of bread was positively correlated with water-binding capacity and was affected by elastic modulus of dough. Results of predicted glycemic index were in accordance with total carbohydrates. Khouzestan received the highest score in sensory evaluation test. Based on the outcomes for bread-quality attributes, Khouzestan from the warm and dry region, which is a cheaper rice variety in Iran, was the most appropriate variety for GFB production. Moreover, it was determined that the rice varieties currently used in commercial manufacture of gluten-free bread do not necessarily yield the highest-quality bread. PRACTICAL APPLICATIONS: Gluten-free breads (GFBs) are generally used by Coeliac patients. In comparison to wheat bread, the quality of GFBs is lower. Rice is one of the main ingredients of GFBs' formulation, thence by determining the quality-related features of the rice, improvement in the final product could be achieved. In addition, by implementing the cheap and the broken rice variety, the price of the final product could be decreased and be more affordable for the patients.

7.
Ultrason Sonochem ; 41: 382-388, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29137765

RESUMO

In this study, the effect of high power ultrasound (US) probe in varying intensities and times (18.4, 29.58, and 73.95 W/cm2 for 5, 12.5 and 20 min respectively) on functional properties of millet protein concentrate (MPC) was investigated, and also the structural properties of best modified treatment were evaluated by FTIR, DSC, Zeta potential and SDS-PAGE techniques. The results showed the solubility in all US treated MPC was significantly (p < .05) higher than those of the native MPC. Foaming capacity of native MPC (271.03 ±â€¯4.51 ml) was reduced after US treatments at low intensities (82.37 ±â€¯5.51 ml), but increased upon US treatments at high intensities (749.7 ±â€¯2 ml). In addition, EAI and ES increased after US treatments. One of the best US treatments that can improve the functional properties of MPC was 73.95 W/cm2 for 12.5 min that resulted in reduction of molecular weight and increase nearly 36% in the negative surface charge that was confirmed by SDS-page and Zeta potential results, respectively.


Assuntos
Milhetes/química , Proteínas de Plantas/química , Sonicação , Estabilidade Proteica , Solubilidade , Temperatura
8.
Int J Biol Macromol ; 105(Pt 1): 121-130, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28684349

RESUMO

This study aimed to develop novel bilayer films based on alginate, chitosan and low-density polyethylene (LDPE) containing different concentrations of summer savory extract (SSE). The cold atmospheric plasma system was used to increase the surface energy of LDPE. Initially, water contact angle, surface roughness and the functional group of LDPE before and after plasma treatment were investigated. Then physical, mechanical, optical, antioxidant and microstructure properties of plasma-treated and untreated bilayer films and antioxidant films incorporated with SSE were characterized. Results showed that plasma treatment increased oxygen-containing the polar group, surface roughness and decreased water contact angle of LDPE surface (from 90.47° to 48.73°) and in result enhanced adhesion between polysaccharide coating and LDPE. Tensile strength of both alginate and chitosan coated-LDPE increased from 10.096 to 14.372 and 11.513 to 13.459MPa, respectively after plasma pretreatment. However chitosan-based films had lower water solubility. Although, incorporation of SSE into chitosan and alginate coated-LDPE despite slight adverse effects on the physical and mechanical properties of films, it provided antioxidant activity. Chitosan coated-LDPE containing SSE had potential to use as antioxidant food packaging.


Assuntos
Alginatos/química , Quitosana/química , Extratos Vegetais/química , Polietileno/química , Satureja/química , Compostos de Bifenilo/química , Embalagem de Alimentos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Fenômenos Mecânicos , Fenômenos Ópticos , Picratos/química , Gases em Plasma/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA