RESUMO
Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RILs) derived from a Setaria italica×Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning, and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple quantitative trait loci (QTL) were identified for stomatal density and canopy temperature, including co-located QTL on chromosomes 5 and 9. The direction of the additive effect of these QTL on chromosome 5 and 9 was in accordance with the positive phenotypic relationship between these two traits. This, along with prior experiments, suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.
Assuntos
Locos de Características Quantitativas , Setaria (Planta) , Secas , Fenótipo , Setaria (Planta)/genética , Temperatura , ÁguaRESUMO
Corky ringspot (CRS) is a widespread potato tuber necrotic disease caused by Tobacco rattle virus (TRV) infection. In the Pacific Northwest, this virus is transmitted by the stubby root nematode (SRN) within the genus Paratrichodorus. Remediating CRS affected fields is a major challenge that can be mitigated by growing plant varieties that are resistant to TRV infection. Growing alfalfa has been shown to reduce TRV levels in CRS infested fields over time but the development of a potato cultivar with these same capabilities would be of great economic benefit to potato growers. Castle Russet is a new potato clone that does not develop symptoms of CRS disease. To assess its ability to reduce soil virus load, Castle Russet, tobacco var. "Samsun NN", alfalfa var. "Vernema", and Russet Burbank potato were grown for a period of 1 to 3 months in soils containing viruliferous SRN populations at two different inoculation pressures (60 nematodes/pot and 1060 nematodes/pot) in greenhouse pot experiments. SRN population size and the presence of TRV were assessed over several months post inoculation. Results indicate that plant host and length of exposure significantly influence SRN population dynamics, whereas the TRV infection status of bait plants was significantly affected by both of these factors as well as inoculation pressure. These results suggest that both alfalfa var. "Vernema" and Castle Russet are resistant to TRV infection and may potentially be used to eliminate the virus from fields affected by CRS.Corky ringspot (CRS) is a widespread potato tuber necrotic disease caused by Tobacco rattle virus (TRV) infection. In the Pacific Northwest, this virus is transmitted by the stubby root nematode (SRN) within the genus Paratrichodorus. Remediating CRS affected fields is a major challenge that can be mitigated by growing plant varieties that are resistant to TRV infection. Growing alfalfa has been shown to reduce TRV levels in CRS infested fields over time but the development of a potato cultivar with these same capabilities would be of great economic benefit to potato growers. Castle Russet is a new potato clone that does not develop symptoms of CRS disease. To assess its ability to reduce soil virus load, Castle Russet, tobacco var. "Samsun NN", alfalfa var. "Vernema", and Russet Burbank potato were grown for a period of 1 to 3 months in soils containing viruliferous SRN populations at two different inoculation pressures (60 nematodes/pot and 1060 nematodes/pot) in greenhouse pot experiments. SRN population size and the presence of TRV were assessed over several months post inoculation. Results indicate that plant host and length of exposure significantly influence SRN population dynamics, whereas the TRV infection status of bait plants was significantly affected by both of these factors as well as inoculation pressure. These results suggest that both alfalfa var. "Vernema" and Castle Russet are resistant to TRV infection and may potentially be used to eliminate the virus from fields affected by CRS.
RESUMO
MAIN CONCLUSION: Misexpression of the AtNPC1 - 1 and AtNPC1 - 2 genes leads to altered sphingolipid metabolism, growth impairment, and male reproductive defects in a hemizygous Arabidopsis thaliana (L.) double-mutant population. Abolishing the expression of both gene copies has lethal effects. Niemann-Pick disease type C1 is a lysosomal storage disorder caused by mutations in the NPC1 gene. At the cellular level, the disorder is characterized by the accumulation of storage lipids and lipid trafficking defects. The Arabidopsis thaliana genome contains two genes (At1g42470 and At4g38350) with weak homology to mammalian NPC1. The corresponding proteins have 11 predicted membrane-spanning regions and contain a putative sterol-sensing domain. The At1g42470 protein is localized to the plasma membrane, while At4g38350 protein has a dual localization in the plasma and tonoplast membranes. A phenotypic analysis of T-DNA insertion mutants indicated that At1g42470 and At4g38350 (designated AtNPC1-1 and AtNPC1-2, respectively) have partially redundant functions and are essential for plant reproductive viability and development. Homozygous plants impaired in the expression of both genes were not recoverable. Plants of a hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 population were severely dwarfed and exhibited male gametophytic defects. These gene disruptions did not have an effect on sterol concentrations; however, hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 mutants had increased fatty acid amounts. Among these, fatty acid α-hydroxytetracosanoic acid (h24:0) occurs in plant sphingolipids. Follow-up analyses confirmed the accumulation of significantly increased levels of sphingolipids (assayed as hydrolyzed sphingoid base component) in the hemizygous double-mutant population. Certain effects of NPC1 misexpression may be common across divergent lineages of eukaryotes (sphingolipid accumulation), while other defects (sterol accumulation) may occur only in certain groups of eukaryotic organisms.