Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrophys J ; 825(2)2016 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32753766

RESUMO

A radial velocity (RV) survey for intermediate-mass giants has been operated for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to γ Hya B ( 0.61 - 0.14 + 0.12 M ⊙ ) , HD 5608 B (0.10 ± 0.01M ⊙), and HD 109272 B (0.28 ± 0.06M ⊙). For the remaining targets(ι Dra, 18 Del, and HD 14067) we exclude companions more massive than 30-60 M Jup at projected separations of 1''-7''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets ι Dra b, HD 5608 b, and HD 14067 b.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32848256

RESUMO

We present high-contrast H-band polarized intensity images of the transitional disk around the young solar-like star LkCa 15. By utilizing Subaru/HiCIAO for polarimetric differential imaging, the angular resolution and the inner working angle reach 0.07 and r = 0″.1, respectively. We obtained a clearly resolved gap (width ≲ 27 au) at ~48 au from the central star. This gap is consistent with images reported in previous studies. We also confirmed the existence of a bright inner disk with a misaligned position angle of 13° ±4° with respect to that of the outer disk, i.e., the inner disk is possibly warped. The large gap and the warped inner disk both point to the existence of a multiple planetary system with a mass of ≲ 1 M Jup.

3.
Nature ; 526(7572): 230-2, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450055

RESUMO

In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the ß Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA