Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15153, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32939021

RESUMO

Eutectic NiAl-(Cr,Mo) composites are promising high temperature materials due to their high melting point, excellent oxidation behavior and low density. To enhance the strength, hardness and fracture toughness, high cooling rates are beneficial to obtain a fine cellular-lamellar microstructure. This can be provided by the additive process of selective electron beam melting. The very high temperature gradient achieved in this process leads to the formation of the finest microstructure that has ever been reported for NiAl-(Cr,Mo) in-situ composites. A very high hardness and fracture toughening mechanisms were observed. This represents a feasibility study towards additive manufacturing of eutectic NiAl-(Cr,Mo) in-situ composites by selective electron beam melting.

2.
Ultramicroscopy ; 159 Pt 2: 413-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25980894

RESUMO

Due to their unique properties, nano-sized materials such as nanoparticles and nanowires are receiving considerable attention. However, little data is available about their chemical makeup at the atomic scale, especially in three dimensions (3D). Atom probe tomography is able to answer many important questions about these materials if the challenge of producing a suitable sample can be overcome. In order to achieve this, the nanomaterial needs to be positioned within the end of a tip and fixed there so the sample possesses sufficient structural integrity for analysis. Here we provide a detailed description of various techniques that have been used to position nanoparticles on substrates for atom probe analysis. In some of the approaches, this is combined with deposition techniques to incorporate the particles into a solid matrix, and focused ion beam processing is then used to fabricate atom probe samples from this composite. Using these approaches, data has been achieved from 10-20 nm core-shell nanoparticles that were extracted directly from suspension (i.e. with no chemical modification) with a resolution of better than ± 1 nm.

3.
Ultramicroscopy ; 150: 30-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497494

RESUMO

The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces.

4.
Ultramicroscopy ; 132: 158-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23485412

RESUMO

Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping.

5.
Ultramicroscopy ; 111(6): 435-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21247698

RESUMO

The random sampling provided by classical atom probe sample preparation methods is one of the major factors limiting the types of problems that can be addressed using this powerful technique. A focused ion beam enables not only site-specific preparation, but can also be used to give the specimen, which acts as the lens in an atom probe experiment, a specific shape. In this paper we present a technique that uses low accelerating voltages (10 and 5 kV) in the focused ion beam (FIB) to reproducibly produce specimens with selected grain boundaries <100 nm from the tip at any desired orientation. These tips have a high rate of successfully running in the atom probe and no Ga contamination within the region of interest. This technique is applied to the analysis of grain boundaries in a high purity iron wire and a strip-cast steel. Lattice resolution is achieved around the boundary in certain areas. Reconstruction of these datasets reveals the distribution of light and heavy elements around the boundary. Issues surrounding the uneven distribution of certain solute elements as a result of field-induced diffusion are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA