RESUMO
Chronic wounds represent a serious worldwide concern, being often associated with bacterial infections. As the prevalence of bacterial infections increase, it is crucial to search for alternatives. Essential oils (EOs) constitute a promising option to antibiotics due to their strong anti-inflammatory, analgesic, antioxidant and antibacterial properties. However, such compounds present high volatility. To address this issue, a drug delivery system composed of coaxial wet-spun fibers was engineered and different EOs, namely clove oil (CO), cinnamon leaf oil (CLO) and tea tree oil (TTO), were loaded. Briefly, a coaxial system composed of two syringe pumps, a coagulation bath of deionized water, a cylindrical-shaped collector and a coaxial spinneret was used. A 10 % w/v polycaprolactone (PCL) solution was combined with the different EOs at 2 × minimum bactericidal concentration (MBC) and loaded to a syringe connected to the inner port, whereas a 10 % w/v cellulose acetate (CA) solution mixed with 10 % w/v polyethylene glycol (PEG) at a ratio of 90:10 % v/v (to increase the fibers' elasticity) was loaded to the syringe connected to the outer port. This layer was used as a barrier to pace the release of the entrapped EO. The CA's inherent porosity in water coagulation baths allowed access to the fiber's core. CA was also mixed with 10 % w/v polyethylene glycol (PEG) at a ratio of 90:10 % v/v (CA:PEG), to increase the fibers' elasticity. Microfibers maintained their structural integrity during 28 days of incubation in physiological-like environments. They also showed high elasticities (maximum elongations at break >300 %) and resistance to rupture in mechanical assessments, reaching mass losses of only ≈ 2.29 % - 57.19 %. The EOs were released from the fibers in a prolonged and sustained fashion, in which ≈ 30 % of EO was released during the 24 h of incubation in physiological-like media, demonstrating great antibacterial effectiveness against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa, the most prevalent bacteria in chronic wounds. Moreover, microfibers showed effective antioxidant effects, presenting up to 59 % of reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity. Furthermore, the coaxial system was deemed safe for contact with fibroblasts and human keratinocytes, reaching metabolic activities higher than 80 % after 48 h of incubation. Data confirmed the suitability of the engineered system for potential therapeutics of chronic wounds.
Assuntos
Antioxidantes , Celulose , Óleos Voláteis , Poliésteres , Poliésteres/química , Antioxidantes/farmacologia , Antioxidantes/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Celulose/química , Celulose/análogos & derivados , Celulose/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Cicatrização/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacosRESUMO
Biomaterials have demonstrated their ability to serve as effective drug delivery platforms, enabling targeted and localized administration of therapeutic agents [...].
Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sistemas de Liberação de Medicamentos/métodos , AnimaisRESUMO
In diabetic ulcers, an increased secretion of human neutrophil elastase (HNE) and bacterial infections play crucial roles in hindering healing. Considering that, the present study proposed the development of multi-action polycaprolactone (PCL)/polyethylene glycol (PEG) electrospun fibers incorporating elastase-targeting peptides, AAPV and WAAPV, via blending. Characterization confirmed WAAPV's efficacy in regulating proteolytic enzymes by inhibiting HNE. The engineered fibers, particularly those containing PEG, exhibited optimal wettability but an accelerated degradation that was mitigated with the peptide's inclusion, thus promoting a sustained peptide release over 24 h. Peptide loading was verified indirectly through thermal stability and hydration capacity studies (hydrophobic bonding between PCL and WAAPV and hydrophilic affinities between PCL/PEG and AAPV) and determined at ≈51.1 µg/cm2 and ≈46.0 µg/cm2 for AAPV and ≈48.5 µg/cm2 and ≈51.3 µg/cm2 for WAAPV, respectively, for PCL and PCL/PEG. Both AAPV and WAAPV effectively inhibited HNE, with PEG potentially enhancing this effect by interacting with the peptides and generating detectable peptide-PEG complexes (≈10% inhibition with PCL + peptide fibers after 6 h of incubation, and ≈20% with PCL/PEG + peptide fibers after 4 h incubation). Peptide-loaded fibers demonstrated antibacterial efficacy against Staphylococcus aureus (up to ≈78% inhibition) and Escherichia coli (up to ≈66% inhibition), with peak effectiveness observed after 4 and 2 h of incubation, respectively. This study provides initial insights into the WAAPV's potential for inhibiting HNE and bacteria activities, showing promise for applications in diabetic ulcer management.
RESUMO
Microbial colonization and development of infections in wounds is a sign of chronicity. The prevailing approach to manage and treat these wounds involves dressings. However, these often fail in effectively addressing infections, as they struggle to both absorb exudates and maintain optimal local moisture. The system here presented was conceptualized with a three-layer design: the outer layer made of a fibrous polycaprolactone (PCL) film, to act as a barrier for preventing microorganisms and impurities from reaching the wound; the intermediate layer formed of a sodium alginate (SA) hydrogel loaded with ampicillin (Amp) for fighting infections; and the inner layer comprised of a fibrous film of PCL and polyethylene glycol (PEG) for facilitating cell recognition and preventing wound adhesion. Thermal evaluations, degradation, wettability and release behavior testing confirmed the system resistance overtime. The sandwich demonstrated the capability for absorbing exudates (≈70 %) and exhibited a controlled release of Amp for up to 24 h. Antimicrobial testing was performed against Staphylococcus aureus and Escherichia coli, as representatives of Gram-positive and Gram-negative bacteria: >99 % elimination of bacteria. Cell cytotoxicity assessments showed high cytocompatibility levels, confirming the safety of the proposed sandwich system. Adhesion assays confirmed the system ease of detaching without mechanical effort (0.37 N). Data established the efficiency of the sandwich-like system, suggesting promising applications in infected wound care.
Assuntos
Alginatos , Antibacterianos , Escherichia coli , Poliésteres , Staphylococcus aureus , Infecção dos Ferimentos , Alginatos/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Antibacterianos/administração & dosagem , Poliésteres/química , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Ampicilina/química , Humanos , Hidrogéis/química , Polietilenoglicóis/química , Animais , Bandagens , Testes de Sensibilidade Microbiana , Camundongos , Cicatrização/efeitos dos fármacosRESUMO
In the last couple of years, the awareness of climate change and high pollution levels have raised our sense of ecological responsibility [...].
RESUMO
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
RESUMO
In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 µg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.
Assuntos
Quitosana , Infecções Estafilocócicas , Humanos , Alginatos/farmacologia , Quitosana/farmacologia , Quitosana/química , Elastase de Leucócito/metabolismo , Elastase de Leucócito/farmacologia , Peptídeos/farmacologia , Polímeros/farmacologia , Staphylococcus aureus/metabolismo , Valina/farmacologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/terapia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologiaRESUMO
The antibiotic crisis is a global concern [...].
Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de MedicamentosRESUMO
Diabetic foot ulcers (DFUs) are one of the main complications of diabetes and are characterized by their complexity and severity, which are frequently aggravated by overexpressed inflammatory factors and polymicrobial infections. Most dressing systems offer a passive action in the treatment of DFUs, being frequently combined with antibiotic or immunomodulatory therapies. However, in many instances due to these combined therapies' inability to properly fight microbial presence, and provide a suitable, breathable and moist environment that is also capable of protecting the site from secondary microbial invasions or further harm, aggravation of the wound state is unavoidable and lower limb amputations are necessary. Considering these limitations and knowing of the urgent demand for new and more effective therapeutic systems for DFU care that will guarantee the quality of life for patients, research in this field has boomed in the last few years. In this review, the emerging innovations in DFU dressing systems via fiber-based scaffolds modified with bioactive compounds have been compiled; data focused on the innovations introduced in the last five years (2017-2022). A generalized overview of the classifications and constraints associated with DFUs healing and the bioactive agents, both antimicrobial and immunomodulatory, that can contribute actively to surpass such issues, has also been provided.
RESUMO
The brown macroalgae of the species Rugulopteryx okamurae has reached European waters and the Strait of Gibraltar as an invasive species. The proliferation and colonization of the species in subtidal and intertidal zones of these regions imposes significant threats to local ecosystems and additionally represents a significant socioeconomic burden related to the large amounts of biomass accumulated as waste. As a way to minimize the effects caused by the accumulation of algae biomass, investigations have been made to employ this biomass as a raw material in value-added products or technologies. The present review explores the potential uses of R. okamurae, focusing on its impact for biogas production, composting, bioplastic and pharmaceutical purposes, with potential anti-inflammatory, antibacterial and α-glucosity inhibitory activities being highlighted. Overall, this species appears to present many attributes, with remarkable potential for uses in several fields of research and in various industries.
Assuntos
Phaeophyceae , Alga Marinha , Ecossistema , BiomassaRESUMO
Biomaterials can be used as implantable devices or drug delivery platforms, which have significant impacts on the patient's quality of life [...].
Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Humanos , Próteses e Implantes , Qualidade de VidaRESUMO
Infection is a major issue in chronic wound care. Different dressings have been developed to prevent microbial propagation, but an effective, all-in-one (cytocompatible, antimicrobial and promoter of healing) solution is still to be uncovered. In this research, polyvinyl alcohol (PVA) nanofibrous mats reinforced with cellulose nanocrystal (CNC), at 10 and 20% v/v ratios, were produced by electrospinning, crosslinked with glutaraldehyde vapor and doped with specialized peptides. Crosslinking increased the mats' fiber diameters but maintained their bead-free morphology. Miscibility between polymers was confirmed by Fourier-transform infrared spectroscopy and thermal evaluations. Despite the incorporation of CNC having reduced the mats' mechanical performance, it improved the mats' surface energy and its structural stability over time. Pexiganan with an extra cysteine group was functionalized onto the mats via hydroxyl- polyethylene glycol 2-maleimide, while Tiger 17 was physisorbed to preserve its cyclic conformation. Antimicrobial assessments demonstrated the peptide-doped mat's effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa; pexiganan contributed mostly for such outcome. Tiger 17 showed excellent capacity in accelerating clotting. Cytocompatibility evaluations attested to these mats' safety. C90/10 PVA/CNC mats were deemed the most effective from the tested group and, thus, a potentially effective option for chronic wound treatments.
Assuntos
Anti-Infecciosos , Hemostáticos , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Celulose/farmacologia , Álcool de Polivinil/química , Estudos Prospectivos , CicatrizaçãoRESUMO
The extraction and exploration of cellulose-based polymers is an exciting area of research [...].
RESUMO
Almost two years have passed since COVID-19 was officially declared a pandemic by the World Health Organization. However, it still holds a tight grasp on the entire human population. Several variants of concern, one after another, have spread throughout the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant may become the fastest spreading virus in history. Therefore, it is more than evident that the use of personal protective equipment (PPE) will continue to play a pivotal role during the current pandemic. This work depicts an integrative approach attesting to the effectiveness of ultra-violet-C (UV-C) energy density for the sterilization of personal protective equipment, in particular FFP2 respirators used by the health care staff in intensive care units. It is increasingly clear that this approach should not be limited to health care units. Due to the record-breaking spreading rates of SARS-CoV-2, it is apparent that the use of PPE, in particular masks and respirators, will remain a critical tool to mitigate future pandemics. Therefore, similar UV-C disinfecting rooms should be considered for use within institutions and companies and even incorporated within household devices to avoid PPE shortages and, most importantly, to reduce environmental burdens.
Assuntos
COVID-19 , Dispositivos de Proteção Respiratória , COVID-19/epidemiologia , COVID-19/prevenção & controle , Hospitais , Humanos , Equipamento de Proteção Individual , Portugal , SARS-CoV-2 , Ventiladores MecânicosRESUMO
In this research, we propose to engineer a nanostructured mat that can simultaneously kill bacteria and promote an environment conducive to healing for prospective wound care. Polyvinyl alcohol (PVA) and cellulose acetate (CA) were combined at different polymer ratios (100/0, 90/10, 80/20% v/v), electrospun and crosslinked with glutaraldehyde vapor. Crosslinked fibers increased in diameter (from 194 to 278 nm), retaining their uniform structure. Fourier-transform infrared spectroscopy and thermal analyses proved the excellent miscibility between polymers. CA incorporation incremented the fibers swelling capacity and reduced the water vapor and air permeabilities of the mats, preventing the excessive drying of wounds. The antimicrobial peptide cys-pexiganan and the immunoregulatory peptide Tiger 17 were incorporated onto the mats via polyethylene glycol spacer (hydroxyl-PEG2-maleimide) and physisorbed, respectively. Time-kill kinetics evaluations revealed the mats effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa. Tiger 17 played a major role in accelerating clotting of re-calcified plasma. Data reports for the first time the collaborative effect of pexiganan and Tiger 17 against bacterial infections and in boosting hemostasis. Cytocompatibility data verified the peptide-modified mats safety. Croslinked 90/10 PVA/CA mats were deemed the most promising combination due to their moderate hydrophilicity and permeabilities, swelling capacity, and high yields of peptide loading.
Assuntos
Anti-Infecciosos , Hemostáticos , Nanofibras , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Celulose/análogos & derivados , Hemostasia , Nanofibras/química , Peptídeos , Álcool de Polivinil/química , Estudos ProspectivosRESUMO
New approaches to deal with the growing concern associated with antibiotic-resistant bacteria are in high demand [...].
RESUMO
Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.
RESUMO
One of the most important measures implemented to reduce SARS-CoV-2 transmission has been the use of face masks. Yet, most mask options available in the market display a passive action against the virus, not actively compromising its viability. Here, we propose to overcome this limitation by incorporating antiviral essential oils (EOs) within polycaprolactone (PCL) electrospun fibrous mats to be used as intermediate layers in individual protection masks. Twenty EOs selected based on their antimicrobial nature were examined for the first time against the Escherichia coli MS2 virus (potential surrogate of SARS-CoV-2). The most effective were the lemongrass (LGO), Niaouli (NO) and eucalyptus (ELO) with a virucidal concentration (VC) of 356.0, 365.2 and 586.0 mg/mL, respectively. PCL was processed via electrospinning, generating uniform, beadless fibrous mats. EOs loading was accomplished via two ways: (1) physisorption on pre-existing mats (PCLaEOs), and (2) EOs blending with the polymer solution prior to fiber electrospinning (PCLbEOs). In both cases, 10% v/v VC was used as loading concentration, so the mats' stickiness and overwhelming smell could be prevented. The EOs presence and release from the mats were confirmed by UV-visible spectroscopy (≈5257-631 µg) and gas chromatography-mass spectrometry evaluations (average of ≈14.3% EOs release over 4 h), respectively. PCLbEOs mats were considered the more mechanically and thermally resilient, with LGO promoting the strongest bonds with PCL (PCLbLGO). On the other hand, PCLaNO and PCLaELO were deemed the least cohesive combinations. Mats modified with the EOs were all identified as superhydrophobic, capable of preventing droplet penetration. Air and water-vapor permeabilities were affected by the mats' porosity (PCL < PCLaEOs < PCLbEOs), exhibiting a similar tendency of increasing with the increase of porosity. Antimicrobial testing revealed the mats' ability to retain the virus (preventing infiltration) and to inhibit its action (log reduction averaging 1). The most effective combination against the MS2 viral particles was the PCLbLGO. These mats' scent was also regarded as the most pleasant during sensory evaluation. Overall, data demonstrated the potential of these EOs-loaded PCL fibrous mats to work as COVID-19 active barriers for individual protection masks.
RESUMO
Electrospinning and wet-spinning have been recognized as two of the most efficient and promising techniques for producing polymeric fibrous constructs for a wide range of applications, including optics, electronics, food industry and biomedical applications. They have gained considerable attention in the past few decades because of their unique features and tunable architectures that can mimic desirable biological features, responding more effectively to local demands. In this review, various fiber architectures and configurations, varying from monolayer and core-shell fibers to tri-axial, porous, multilayer, side-by-side and helical fibers, are discussed, highlighting the influence of processing parameters in the final constructs. Additionally, the envisaged biomedical purposes for the examined fiber architectures, mainly focused on drug delivery and tissue engineering applications, are explored at great length.
RESUMO
In assigning priorities, skin infectious diseases are frequently classified as minor when compared to infectious diseases of high mortality rates, such as tuberculosis or HIV. However, skin infections are amongst the most common and prevalent diseases worldwide. Elderly individuals present an increased susceptibility to skin infections, which may develop atypical signs and symptoms or even complicate pre-existing chronic disorders. When the skin fails to correct or inhibit the action of certain pathogenic microorganisms, biomolecules endowed with antimicrobial features are frequently administered topically or systemically to assist or treat such conditions. (1) Antibiotics, (2) antimicrobial peptides, or (3) natural extracts display important features that can actively inhibit the propagation of these pathogens and prevent the evolution of infectious diseases. This review highlights the properties and mechanisms of action of these biomolecules, emphasizing their effects on the most prevalent and difficult to treat skin infections caused by pathogenic bacteria, fungi, and viruses. The versatility of biomolecules' actions, their symbiotic effects with skin cells and other inherent antimicrobial components, and their target-directed signatures are also explored here.