Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 1: 378-390, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264521

RESUMO

Because of the similar phenotypes they generate and their proximate reported locations on Chromosome 7, we tested the recessive retarded hair growth (rhg) and frizzy (fr) mouse mutations for allelism, but found instead that these defects complement. To discover the molecular basis of rhg, we analyzed a large intraspecific backcross panel that segregated for rhg and restricted this locus to a 0.9 Mb region that includes fewer than ten genes, only five of which have been reported to be expressed in skin. Complementation testing between rhg and a recessive null allele of fibroblast growth factor receptor 2 eliminated Fgfr2 as the possible basis of the retarded hair growth phenotype, but DNA sequencing of another of these candidates, ornithine aminotransferase (Oat), revealed a G to C transversion specifically associated with the rhg allele that would result in a glycine to alanine substitution at residue 353 of the gene product. To test whether this missense mutation might cause the mutant phenotype, we crossed rhg/rhg mice with mice that carried a recessive, perinatal-lethal, null mutation in Oat (designated OatΔ herein). Hybrid offspring that inherited both rhg and OatΔ displayed markedly delayed postnatal growth and hair development, indicating that these two mutations are allelic, and suggesting strongly that the G to C mutation in Oat is responsible for the retarded hair growth phenotype. Comparisons among +/+, rhg/+, rhg/rhg and rhg/OatΔ mice showed plasma ornithine levels and ornithine aminotransferase activities (in liver lysates) consistent with this assignment. Because histology of 7- and 12-month-old rhg/rhg and rhg/OatΔ retinas revealed chorioretinal degeneration similar to that described previously for OatΔ/OatΔ mice, we suggest that the rhg mutant may offer an ideal model for gyrate atrophy of the choroid and retina (GACR) in humans, which is also caused by the substitution of glycine 353 in some families.

2.
BMC Genet ; 14: 40, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23659281

RESUMO

BACKGROUND: Mice homozygous for the juvenile alopecia mutation (jal) display patches of hair loss that appear as soon as hair develops in the neonatal period and persist throughout life. Although a report initially describing this mouse variant suggested that jal maps to mouse Chromosome 13, our preliminary mapping analysis did not support that claim. RESULTS: To map jal to a particular mouse chromosome, we produced a 103-member intraspecific backcross panel that segregated for jal, and typed it for 93 PCR-scorable, microsatellite markers that are located throughout the mouse genome. Only markers from the centromeric tip of Chromosome 2 failed to segregate independently from jal, suggesting that jal resides in that region. To more precisely define jal's location, we characterized a second, 374-member backcross panel for the inheritance of five microsatellite markers from proximal Chromosome 2. This analysis restricted jal's position between D2Mit359 and D2Mit80, an interval that includes Il2ra (for interleukin 2 receptor, alpha chain), a gene that is known to be associated with alopecia areata in humans. Complementation testing with an engineered null allele of Il2ra, however, showed that jal is a mutation in a distinct gene. To further refine the location of jal, the 374-member panel was typed for a set of four single-nucleotide markers located between D2Mit359 and D2Mit80, identifying a 0.55 Mb interval where jal must lie. This span includes ten genes-only one of which, Gata3 (for GATA binding protein 3)-is known to be expressed in skin. Complementation testing between jal and a Gata3 null allele produced doubly heterozygous, phenotypically mutant offspring. CONCLUSIONS: The results presented indicate that the jal mutation is a mutant allele of the Gata3 gene on mouse Chromosome 2. We therefore recommend that the jal designation be changed to Gata3jal, and suggest that this mouse variant may provide an animal model for at least some forms of focal alopecia that have their primary defect in the hair follicle and lack an inflammatory component.


Assuntos
Alelos , Alopecia/genética , Mapeamento Cromossômico , Fator de Transcrição GATA3/genética , Mutação , Animais , Sequência de Bases , Primers do DNA , Teste de Complementação Genética , Subunidade alfa de Receptor de Interleucina-2/genética , Camundongos , Camundongos Endogâmicos , Reação em Cadeia da Polimerase
3.
BMC Res Notes ; 6: 189, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23656696

RESUMO

BACKGROUND: Mice homozygous for the spontaneous wooly mutation (abbreviated wly) are recognized as early as 3-4 weeks of age by the rough or matted appearance of their coats. Previous genetic analysis has placed wly in a 5.9 Mb interval on Chromosome 11 that contains over 200 known genes. Assignment of wly to one of these genes is needed in order to provide probes that would ultimately facilitate a complete molecular analysis of that gene's role in the normal and disrupted development of the mammalian integument. RESULTS: Here, a large intraspecific backcross family was used to genetically map wly to a smaller (0.8 Mb) span on mouse Chromosome 11 that includes fewer than 20 genes. DNA sequencing of the coding regions in two of these candidates known to be expressed in skin has revealed a 955 bp, wly-specific deletion. This deletion, which lies within the coordinates of both Slc5a10 [for solute carrier family 5 (sodium/glucose cotransporter), member 10] and Fam83g (for family with sequence similarity 83, member G), alters the splicing of mutant Fam83g transcripts only, and is predicted to result in a severely truncated (probably non-functional) protein product. CONCLUSION: We suggest that this mutation in Fam83g is the likely basis of the mouse wooly phenotype.


Assuntos
Mapeamento Cromossômico , Mutação , Proteínas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA , Meiose/genética , Camundongos , Sondas Moleculares , Dados de Sequência Molecular , Fenótipo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA