Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(4): 674-682, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38416724

RESUMO

False changes discovered by quantitative proteomics reduce the trust of biologists in proteomics and limit the applications of proteomics to unlock biological mechanisms, which suppresses the application of proteomics techniques in the pharmaceutical industry more than it does in academic research. To remove false changes that arise during LC-MS/MS data acquisition, we evaluated the contributions of peptide abundance and number of unique peptides on reproducibility. Lower abundance and only one unique peptide have a higher risk of generating a higher coefficient of variation (CV), resulting in less accurate quantification. However, the abundance of peptides in samples is not adjustable and discarding proteins quantified by only one unique peptide is not a choice either. Indeed, a large percentage of proteins are accurately quantified by only one unique peptide. Therefore, to improve the calculations of the CV, we leverage a new function in PEAKS called QC-channels which enables technical replicates of each spectrum to be evaluated prior to calculation of the CV. While the QC-channels function in PEAKS significantly reduced the false quantification, random false changes still exist due to known or unknown reasons. To address this challenge, we present the idea of Trend-design to track trend changes rather than changes from two points to remove false quantifications and reveal consequential changes responding to a treatment or condition. The idea was confirmed by molecules with different affinity and dose in the current study. The combination of QC-channels and Trend-design enables a more impactful quantitative proteomics to allow unlocking biological mechanisms using proteomics.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas , Peptídeos/química
2.
J Biol Chem ; 295(5): 1315-1327, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31871053

RESUMO

Pain is a significant public health burden in the United States, and current treatment approaches rely heavily on opioids, which often have limited efficacy and can lead to addiction. In humans, functional loss of the voltage-gated sodium channel Nav1.7 leads to pain insensitivity without deficits in the central nervous system. Accordingly, discovery of a selective Nav1.7 antagonist should provide an analgesic without abuse liability and an improved side-effect profile. Huwentoxin-IV, a component of tarantula venom, potently blocks sodium channels and is an attractive scaffold for engineering a Nav1.7-selective molecule. To define the functional impact of alterations in huwentoxin-IV sequence, we produced a library of 373 point mutants and tested them for Nav1.7 and Nav1.2 activity. We then combined favorable individual changes to produce combinatorial mutants that showed further improvements in Nav1.7 potency (E1N, E4D, Y33W, Q34S-Nav1.7 pIC50 = 8.1 ± 0.08) and increased selectivity over other Nav isoforms (E1N, R26K, Q34S, G36I, Nav1.7 pIC50 = 7.2 ± 0.1, Nav1.2 pIC50 = 6.1 ± 0.18, Nav1.3 pIC50 = 6.4 ± 1.0), Nav1.4 is inactive at 3 µm, and Nav1.5 is inactive at 10 µm We also substituted noncoded amino acids at select positions in huwentoxin-IV. Based on these results, we identify key determinants of huwentoxin's Nav1.7 inhibition and propose a model for huwentoxin-IV's interaction with Nav1.7. These findings uncover fundamental features of huwentoxin involved in Nav1.7 blockade, provide a foundation for additional optimization of this molecule, and offer a basis for the development of a safe and effective analgesic.


Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Venenos de Aranha/química , Venenos de Aranha/genética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos/genética , Desenvolvimento de Medicamentos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Mutagênese , Canal de Sódio Disparado por Voltagem NAV1.2/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Biblioteca de Peptídeos , Mutação Puntual , Engenharia de Proteínas , Isoformas de Proteínas , Proteínas Recombinantes , Venenos de Aranha/isolamento & purificação
3.
J Biol Chem ; 289(33): 22704-22714, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939846

RESUMO

Ion channels are an attractive class of drug targets, but progress in developing inhibitors for therapeutic use has been limited largely due to challenges in identifying subtype selective small molecules. Animal venoms provide an alternative source of ion channel modulators, and the venoms of several species, such as scorpions, spiders and snails, are known to be rich sources of ion channel modulating peptides. Importantly, these peptides often bind to hyper-variable extracellular loops, creating the potential for subtype selectivity rarely achieved with small molecules. We have engineered scorpion venom peptides and incorporated them in fusion proteins to generate highly potent and selective Kv1.3 inhibitors with long in vivo half-lives. Kv1.3 has been reported to play a role in human T cell activation, and therefore, these Kv1.3 inhibitor fusion proteins may have potential for the treatment of autoimmune diseases. Our results support an emerging approach to generating subtype selective therapeutic ion channel inhibitors.


Assuntos
Proteínas de Artrópodes/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Engenharia de Proteínas , Venenos de Escorpião/farmacologia , Linfócitos T/metabolismo , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Células CHO , Cricetinae , Cricetulus , Sistemas de Liberação de Medicamentos , Meia-Vida , Humanos , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Peptídeos/química , Peptídeos/genética , Bloqueadores dos Canais de Potássio/química , Ratos , Venenos de Escorpião/química , Venenos de Escorpião/genética
4.
J Biol Chem ; 288(31): 22707-20, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23760503

RESUMO

Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity.


Assuntos
Ativação do Canal Iônico , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/química , Sequência de Aminoácidos , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ensaio Radioligante , Homologia de Sequência de Aminoácidos , Venenos de Aranha/farmacologia , Relação Estrutura-Atividade
5.
Antiviral Res ; 85(3): 470-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19883694

RESUMO

Nucleoside analogs are effective inhibitors of the hepatitis C virus (HCV) in the clinical setting. One such molecule, 2'-C-methyl-cytidine (2'-MeC), entered clinical development as NM283, a valine ester prodrug form of 2'-MeC possessing improved oral bioavailability. To be active against HCV, 2'-MeC must be converted to 2'-MeC triphosphate which inhibits NS5B, the HCV RNA-dependent RNA polymerase. Conversion of 2'-MeC to 2'-MeC monophosphate is the first step in 2'-MeC triphosphate production and is thought to be the rate-limiting step. Here we investigate which of three possible enzymes, deoxycytidine kinase (dCK), uridine-cytidine kinase 1 (UCK1), or uridine-cytidine kinase 2 (UCK2), mediate this first phosphorylation step. Purified recombinant enzymes UCK2 and dCK, but not UCK1, could phosphorylate 2'-MeC in vitro. However, siRNA knockdown experiments in three human cell lines (HeLa, Huh7 and HepG2) defined UCK2 and not dCK as the key kinase for the formation of 2'-MeC monophosphate in cultured human cells. These results underscore the importance of confirming enzymatic kinase data with appropriate cell-based assays. Finally, we present data suggesting that inefficient phosphorylation by UCK2 likely limits the antiviral activity of 2'-MeC against HCV. This paves the way for the use of a nucleotide prodrug approach to overcome this limitation.


Assuntos
Antivirais/metabolismo , Monofosfato de Citidina/metabolismo , Citidina/análogos & derivados , Desoxicitidina Quinase/metabolismo , Pró-Fármacos/metabolismo , Uridina Quinase/metabolismo , Biotransformação , Linhagem Celular , Citidina/metabolismo , Monofosfato de Citidina/análogos & derivados , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/isolamento & purificação , Inativação Gênica , Hepacivirus/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/genética , Uridina Quinase/genética , Uridina Quinase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA