Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
FASEB J ; 38(11): e23726, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847773

RESUMO

Calcitriol and calcimimetics are used to treat hyperparathyroidism secondary to chronic kidney disease (CKD). Calcitriol administration and the subsequent increase in serum calcium concentration decrease parathyroid hormone (PTH) levels, which should reduce bone remodeling. We have previously reported that, when maintaining a given concentration of PTH, the addition of calcimimetics is associated with an increased bone cell activity. Whether calcitriol administration affects bone cell activity while PTH is maintained constant should be evaluated in an animal model of renal osteodystrophy. The aim of the present study was to compare in CKD PTH-clamped rats the bone effects of calcitriol and calcimimetic administration. The results show that the administration of calcitriol and calcimimetic at doses that induced a similar reduction in PTH secretion produced dissimilar effects on osteoblast activity in 5/6 nephrectomized (Nx) rats with secondary hyperparathyroidism and in Nx rats with clamped PTH. Remarkably, in both rat models, the administration of calcitriol decreased osteoblastic activity, whereas calcimimetic increased bone cell activity. In vitro, calcitriol supplementation inhibited nuclear translocation of ß-catenin and reduced proliferation, osteogenesis, and mineralization in mesenchymal stem cells differentiated into osteoblasts. In conclusion, besides the action of calcitriol and calcimimetics at parathyroid level, these treatments have specific effects on bone cells that are independent of the PTH level.


Assuntos
Calcimiméticos , Calcitriol , Osteoblastos , Hormônio Paratireóideo , Animais , Calcitriol/farmacologia , Ratos , Calcimiméticos/farmacologia , Calcimiméticos/uso terapêutico , Hormônio Paratireóideo/farmacologia , Masculino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/etiologia , Hiperparatireoidismo Secundário/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Ratos Wistar , Insuficiência Renal/tratamento farmacológico , Insuficiência Renal/metabolismo , Osteogênese/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Diferenciação Celular/efeitos dos fármacos , Cálcio/metabolismo
2.
Nutrients ; 13(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498560

RESUMO

In chronic kidney disease (CKD) patients, it would be desirable to reduce the intake of inorganic phosphate (P) rather than limit the intake of P contained in proteins. Urinary excretion of P should reflect intestinal absorption of P(inorganic plus protein-derived). The aim of the present study is to determine whether the ratio of urinary P to urinary urea nitrogen (P/UUN ratio) helps identify patients with a high intake of inorganic P.A cross-sectional study was performed in 71 patients affected by metabolic syndrome with CKD (stages 2-3) with normal serum P concentration. A 3-day dietary survey was performed to estimate the average daily amount and the source of P ingested. The daily intake ofPwas1086.5 ± 361.3mg/day; 64% contained in animal proteins, 22% in vegetable proteins, and 14% as inorganic P. The total amount of P ingested did not correlate with daily phosphaturia, but it did correlate with the P/UUN ratio (p < 0.018). Patients with the highest tertile of the P/UUN ratio >71.1 mg/g presented more abundant inorganic P intake (p < 0.038).The P/UUN ratio is suggested to be a marker of inorganic P intake. This finding might be useful in clinical practices to identify the source of dietary P and to make personalized dietary recommendations directed to reduce inorganic P intake.


Assuntos
Dieta , Ingestão de Alimentos , Fosfatos/administração & dosagem , Fosfatos/urina , Ureia/urina , Adulto , Idoso , Animais , Estudos Transversais , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar
3.
Kidney Int ; 95(5): 1064-1078, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878213

RESUMO

Calcimimetics decrease parathyroid hormone (PTH) secretion in patients with secondary hyperparathyroidism. The decrease in PTH should cause a reduction in bone turnover; however, the direct effect of calcimimetics on bone cells, which express the calcium-sensing receptor (CaSR), has not been defined. In this study, we evaluated the direct bone effects of CaSR activation by a calcimimetic (AMG 641) in vitro and in vivo. To create a PTH "clamp," total parathyroidectomy was performed in rats with and without uremia induced by 5/6 nephrectomy, followed by a continuous subcutaneous infusion of PTH. Animals were then treated with either the calcimimetic or vehicle. Calcimimetic administration increased osteoblast number and osteoid volume in normal rats under a PTH clamp. In uremic rats, the elevated PTH concentration led to reduced bone volume and increased bone turnover, and calcimimetic administration decreased plasma PTH. In uremic rats exposed to PTH at 6-fold the usual replacement dose, calcimimetic administration increased osteoblast number, osteoid surface, and bone formation. A 9-fold higher dose of PTH caused an increase in bone turnover that was not altered by the administration of calcimimetic. In an osteosarcoma cell line, the calcimimetic induced Erk1/2 phosphorylation and the expression of osteoblast genes. The addition of a calcilytic resulted in the opposite effect. Moreover, the calcimimetic promoted the osteogenic differentiation and mineralization of human bone marrow mesenchymal stem cells in vitro. Thus, calcimimetic administration has a direct anabolic effect on bone that counteracts the decrease in PTH levels.


Assuntos
Compostos de Bifenilo/administração & dosagem , Remodelação Óssea/efeitos dos fármacos , Calcimiméticos/administração & dosagem , Hiperparatireoidismo Secundário/tratamento farmacológico , Falência Renal Crônica/complicações , Fenetilaminas/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Hiperparatireoidismo Secundário/sangue , Hiperparatireoidismo Secundário/etiologia , Masculino , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/metabolismo
4.
Semin Dial ; 28(6): 564-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303319

RESUMO

Calcium, phosphorus, and magnesium homeostasis is altered in chronic kidney disease (CKD). Hypocalcemia, hyperphosphatemia, and hypermagnesemia are not seen until advanced CKD because adaptations develop. Increased parathyroid hormone (PTH) secretion maintains serum calcium normal by increasing calcium efflux from bone, renal calcium reabsorption, and phosphate excretion. Similarly, renal phosphate excretion in CKD is maintained by increased secretion of fibroblast growth factor 23 (FGF23) and PTH. However, the phosphaturic effect of FGF23 is reduced by downregulation of its cofactor Klotho necessary for binding FGF23 to FGF receptors. Intestinal phosphate absorption is diminished in CKD due in part to reduced levels of 1,25 dihydroxyvitamin D. Unlike calcium and phosphorus, magnesium is not regulated by a hormone, but fractional excretion of magnesium increases as CKD progresses. As 60-70% of magnesium is reabsorbed in the thick ascending limb of Henle, activation of the calcium-sensing receptor by magnesium may facilitate magnesium excretion in CKD. Modification of the TRPM6 channel in the distal tubule may also have a role. Besides abnormal bone morphology and vascular calcification, abnormalities in mineral homeostasis are associated with increased cardiovascular risk, increased mortality and progression of CKD.


Assuntos
Cálcio/metabolismo , Taxa de Filtração Glomerular/fisiologia , Rim/fisiopatologia , Magnésio/metabolismo , Doenças Metabólicas/etiologia , Fósforo/metabolismo , Insuficiência Renal Crônica , Progressão da Doença , Fator de Crescimento de Fibroblastos 23 , Humanos , Doenças Metabólicas/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia
5.
Clin Kidney J ; 8(2): 180-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25815174

RESUMO

Calcitonin is a 32 amino acid hormone secreted by the C-cells of the thyroid gland. Calcitonin has been preserved during the transition from ocean-based life to land dwellers and is phylogenetically older than parathyroid hormone. Calcitonin secretion is stimulated by increases in the serum calcium concentration and calcitonin protects against the development of hypercalcemia. Calcitonin is also stimulated by gastrointestinal hormones such as gastrin. This has led to the unproven hypothesis that postprandial calcitonin stimulation could play a role in the deposition of calcium and phosphate in bone after feeding. However, no bone or other abnormalities have been described in states of calcitonin deficiency or excess except for diarrhea in a few patients with medullary thyroid carcinoma. Calcitonin is known to stimulate renal 1,25 (OH)2 vitamin D (1,25D) production at a site in the proximal tubule different from parathyroid hormone and hypophosphatemia. During pregnancy and lactation, both calcitonin and 1,25D are increased. The increases in calcitonin and 1,25D may be important in the transfer of maternal calcium to the fetus/infant and in the prevention and recovery of maternal bone loss. Calcitonin has an immediate effect on decreasing osteoclast activity and has been used for treatment of hypercalcemia. Recent studies in the calcitonin gene knockout mouse have shown increases in bone mass and bone formation. This last result together with the presence of calcitonin receptors on the osteocyte suggests that calcitonin could possibly affect osteocyte products which affect bone formation. In summary, a precise role for calcitonin remains elusive more than 50 years after its discovery.

6.
Nefrologia ; 34(5): 658-69, 2014.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-25259820

RESUMO

Hyperparathyroidism develops in chronic kidney disease (CKD). A decreased calcemic response to parathyroid hormone (PTH) contributes to the development of hyperparathyroidism and is presumed due to reduced calcium efflux from bone. Contributing factors to the decreased calcemic response to PTH in CKD include: 1) hyperphosphatemia; 2) decreased serum calcitriol; 3) downregulation of the PTH1 receptor; 4) large, truncated amino-terminal PTH fragments acting at the carboxy-PTH receptor; and 5) uremic toxins. Also, prolonged high dose calcitriol administration may decrease the exchangeable pool of bone calcium independent of PTH. The goal of the review is to provide a better understanding of how the above cited factors affect calcium efflux from bone in CKD. In conclusion, much remains to be learned about the role of bone in the regulation of serum calcium.


Assuntos
Osso e Ossos/metabolismo , Cálcio/sangue , Hormônio Paratireóideo/fisiologia , Fosfatos/fisiologia , Uremia/metabolismo , Vitamina D/fisiologia , Cálcio/metabolismo , Humanos , Hormônio Paratireóideo/farmacologia , Fosfatos/farmacologia , Vitamina D/farmacologia
7.
Clin Kidney J ; 7(3): 299-302, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25852894

RESUMO

A 58-year-old man with Stage 3b chronic kidney disease and primary hyperparathyroidism treated with cinacalcet was admitted for acute cholecystitis. A cholecystostomy tube was placed, estimated glomerular filtration rate decreased, metabolic acidosis developed and ionized calcium increased from 1.33 to 1.76 mM despite cinacalcet administration. A sodium bicarbonate infusion corrected the metabolic acidosis restoring ionized calcium to normal despite no improvement in renal function. The correlation between the increase in serum bicarbonate and decrease in ionized calcium was r = -0.93, P < 0.001. In summary, severe hypercalcemia was attributable to metabolic acidosis increasing calcium efflux from bone while renal failure decreased the capacity to excrete calcium.

8.
Am J Kidney Dis ; 60(4): 655-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22863286

RESUMO

Hypophosphatemia can be acute or chronic. Acute hypophosphatemia with phosphate depletion is common in the hospital setting and results in significant morbidity and mortality. Chronic hypophosphatemia, often associated with genetic or acquired renal phosphate-wasting disorders, usually produces abnormal growth and rickets in children and osteomalacia in adults. Acute hypophosphatemia may be mild (phosphorus level, 2-2.5 mg/dL), moderate (1-1.9 mg/dL), or severe (<1 mg/dL) and commonly occurs in clinical settings such as refeeding, alcoholism, diabetic ketoacidosis, malnutrition/starvation, and after surgery (particularly after partial hepatectomy) and in the intensive care unit. Phosphate replacement can be given either orally, intravenously, intradialytically, or in total parenteral nutrition solutions. The rate and amount of replacement are empirically determined, and several algorithms are available. Treatment is tailored to symptoms, severity, anticipated duration of illness, and presence of comorbid conditions, such as kidney failure, volume overload, hypo- or hypercalcemia, hypo- or hyperkalemia, and acid-base status. Mild/moderate acute hypophosphatemia usually can be corrected with increased dietary phosphate or oral supplementation, but intravenous replacement generally is needed when significant comorbid conditions or severe hypophosphatemia with phosphate depletion exist. In chronic hypophosphatemia, standard treatment includes oral phosphate supplementation and active vitamin D. Future treatment for specific disorders associated with chronic hypophosphatemia may include cinacalcet, calcitonin, or dypyrimadole.


Assuntos
Hipofosfatemia/terapia , Doença Aguda , Doença Crônica , Comorbidade , Suplementos Nutricionais , Humanos , Hipofosfatemia/epidemiologia , Hipofosfatemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Vitamina D/administração & dosagem
10.
Nephrol Dial Transplant ; 25(4): 1087-97, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19934096

RESUMO

Background. Many experimental studies have demonstrated that parathyroid cell proliferation is induced by uremia and further aggravated by hypocalcemia, phosphorus retention and vitamin D deficiency. However, these factors may also promote parathyroid growth without uremia. In the present study, we examined the onset and progression of parathyroid hyperplasia regardless of the uremic setting, a situation that might occur soon during the early renal disease. Thus, the novelty of this work resides in the close examination of the time course for the expected changes in proliferation rates and their association with parathyroid hormone (PTH) release in normal rats under the physiological demands of a high-phosphate diet (HPD) or a low-calcium diet (LCD). Methods. We evaluated the functional response of the parathyroid glands in normal rats to different physiological demands an HPD 0.6% Ca, 1.2% P) and LCD 0.2% Ca, 0.6% P) and compared it with that of uremic rats. Furthermore, we also evaluated the time course for the reversal of high-P and low-Ca-induced parathyroid cell growth and PTH upon normalization of dietary Ca and P intake (0.6% Ca, 0.6% P). Proliferation was measured by flow cytometry and calcium receptor (CaR) and vitamin D receptor (VDR) expression were assessed by qRT-PCR. Results. The pattern in the development of parathyroid hyperplasia by the two dietary models was different. The HPD produced a stronger stimulus than the number of proliferating cells doubled after only 1 day, while the LCD required 5 days to induce an increase; the elevated calcitriol might be a mitigating factor. The increase in cell proliferation was accompanied by a transient down-regulation of VDR expression (higher in the HPD); the expression of CaR was not affected by either diet. Cell proliferation and VDR mRNA levels were restored to control values by Day 15; it is as though the gland had attained a sufficient level of hyperplasia to respond to the PTH challenge. Compared to normal rats, the response of uremic rats to the HPD showed sustained and much higher rates of PTH secretion and cell proliferation and sustained down-regulation of both VDR mRNA and CaR mRNA. Finally, the recovery from the HPD or LCD to a control diet resulted in a rapid restoration of PTH values (1 to 2 days), but the reduction in cell proliferation was delayed (3 to 5 days). Conclusions. Regardless of uremia, a physiological demand to increase the PTH secretion driven either by a high P or a low Ca intake is able to induce a different pattern of parathyroid hyperplasia, which might be aggravated by the down-regulation of VDR expression. The recovery from the HPD or LCD to a control diet results in a more rapid reduction in PTH than in cell proliferation.


Assuntos
Cálcio da Dieta/administração & dosagem , Glândulas Paratireoides/patologia , Hormônio Paratireóideo/metabolismo , Fósforo na Dieta/administração & dosagem , Uremia/patologia , Animais , Western Blotting , Cálcio da Dieta/farmacologia , Proliferação de Células , Hiperplasia , Masculino , Glândulas Paratireoides/metabolismo , Fósforo na Dieta/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uremia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA