Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 243: 106561, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866189

RESUMO

The role of mitochondria in steroidogenesis is well established. However, the specific effects of mitochondrial dysfunction on androgen synthesis are not fully understood. In this study, we investigate the effects of various mitochondrial and metabolic inhibitors in H295R adrenal cells and perform a comprehensive analysis of steroid and metabolite profiling. We report that mitochondrial complex I inhibition by rotenone shifts cells toward anaerobic metabolism with a concomitant hyperandrogenic phenotype characterized by rapid stimulation of dehydroepiandrosterone (DHEA, 2 h) and slower accumulation of androstenedione and testosterone (24 h). Screening of metabolic inhibitors confirmed DHEA stimulation, which included mitochondrial complex III and mitochondrial pyruvate carrier inhibition. Metabolomic studies revealed truncated tricarboxylic acid cycle with an inverse correlation between citric acid and DHEA production as a common metabolic marker of hyperandrogenic inhibitors. The current study sheds light on a direct interplay between energy metabolism and androgen biosynthesis that could be further explored to identify novel molecular targets for efficient treatment of androgen excess disorders.

2.
Nat Commun ; 14(1): 2471, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120582

RESUMO

T helper 9 (TH9) cells promote allergic tissue inflammation and express the type 2 cytokines, IL-9 and IL-13, as well as the transcription factor, PPAR-γ. However, the functional role of PPAR-γ in human TH9 cells remains unknown. Here, we demonstrate that PPAR-γ drives activation-induced glycolysis, which, in turn, promotes the expression of IL-9, but not IL-13, in an mTORC1-dependent manner. In vitro and ex vivo experiments show that the PPAR-γ-mTORC1-IL-9 pathway is active in TH9 cells in human skin inflammation. Additionally, we find dynamic regulation of tissue glucose levels in acute allergic skin inflammation, suggesting that in situ glucose availability is linked to distinct immunological functions in vivo. Furthermore, paracrine IL-9 induces expression of the lactate transporter, MCT1, in TH cells and promotes their aerobic glycolysis and proliferative capacity. Altogether, our findings uncover a hitherto unknown relationship between PPAR-γ-dependent glucose metabolism and pathogenic effector functions in human TH9 cells.


Assuntos
Interleucina-9 , PPAR gama , Humanos , Glucose/metabolismo , Glicólise , Inflamação/patologia , Interleucina-13/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Linfócitos T Auxiliares-Indutores
4.
JHEP Rep ; 4(7): 100508, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35712694

RESUMO

Background & Aims: High-dose irradiation is an essential tool to help control the growth of hepatic tumors, but it can cause radiation-induced liver disease (RILD). This life-threatening complication manifests itself months following radiation therapy and is characterized by fibrosis of the pericentral sinusoids. In this study, we aimed to establish a mouse model of RILD to investigate the underlying mechanism of radiation-induced liver fibrosis. Methods: Using a small animal image-guided radiation therapy platform, an irradiation scheme delivering 50 Gy as a single dose to a focal point in mouse livers was designed. Tissues were analyzed 1 and 6 days, and 6 and 20 weeks post-irradiation. Irradiated livers were assessed by histology, immunohistochemistry, imaging mass cytometry and RNA sequencing. Mitochondrial function was assessed using high-resolution respirometry. Results: At 6 and 20 weeks post-irradiation, pericentral fibrosis was visible in highly irradiated areas together with immune cell infiltration and extravasation of red blood cells. RNA sequencing analysis showed gene signatures associated with acute DNA damage, p53 activation, senescence and its associated secretory phenotype and fibrosis. Moreover, gene profiles of mitochondrial damage and an increase in mitochondrial DNA heteroplasmy were detected. Respirometry measurements of hepatocytes in vitro confirmed irradiation-induced mitochondrial dysfunction. Finally, the highly irradiated fibrotic areas showed markers of reactive oxygen species such as decreased glutathione and increased lipid peroxides and a senescence-like phenotype. Conclusions: Based on our mouse model of RILD, we propose that irradiation-induced mitochondrial DNA instability contributes to the development of fibrosis via the generation of excessive reactive oxygen species, p53 pathway activation and a senescence-like phenotype. Lay summary: Irradiation is an efficient cancer therapy, however, its applicability to the liver is limited by life-threatening radiation-induced hepatic fibrosis. We have developed a new mouse model of radiation-induced liver fibrosis, that recapitulates the human disease. Our model highlights the role of mitochondrial DNA instability in the development of irradiation-induced liver fibrosis. This new model and subsequent findings will help increase our understanding of the hepatic reaction to irradiation and to find strategies that protect the liver, enabling the expanded use of radiotherapy to treat hepatic tumors.

5.
EMBO Rep ; 23(1): e53054, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779571

RESUMO

Cancer cells depend on mitochondria to sustain their increased metabolic need and mitochondria therefore constitute possible targets for cancer treatment. We recently developed small-molecule inhibitors of mitochondrial transcription (IMTs) that selectively impair mitochondrial gene expression. IMTs have potent antitumor properties in vitro and in vivo, without affecting normal tissues. Because therapy-induced resistance is a major constraint to successful cancer therapy, we investigated mechanisms conferring resistance to IMTs. We employed a CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats)-(CRISP-associated protein 9) whole-genome screen to determine pathways conferring resistance to acute IMT1 treatment. Loss of genes belonging to von Hippel-Lindau (VHL) and mammalian target of rapamycin complex 1 (mTORC1) pathways caused resistance to acute IMT1 treatment and the relevance of these pathways was confirmed by chemical modulation. We also generated cells resistant to chronic IMT treatment to understand responses to persistent mitochondrial gene expression impairment. We report that IMT1-acquired resistance occurs through a compensatory increase of mitochondrial DNA (mtDNA) expression and cellular metabolites. We found that mitochondrial transcription factor A (TFAM) downregulation and inhibition of mitochondrial translation impaired survival of resistant cells. The identified susceptibility and resistance mechanisms to IMTs may be relevant for different types of mitochondria-targeted therapies.


Assuntos
Sistemas CRISPR-Cas , DNA Mitocondrial , DNA Mitocondrial/genética , Regulação para Baixo , Edição de Genes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transcrição Gênica
6.
Mol Genet Metab Rep ; 29: 100814, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712577

RESUMO

Mitochondrial malate dehydrogenase (MDH2) deficiency (MDH2D) is an ultra-rare disease with only three patients described in literature to date. MDH2D leads to an interruption of the tricarboxylic acid (TCA) cycle and malate-aspartate shuttle (MAS) and results in severe early onset encephalopathy. Affected infants suffer from psychomotor delay, muscular hypotonia and frequent seizures. Laboratory findings are unspecific, including elevated lactate in blood and cerebrospinal fluid. Brain magnetic resonance imaging reveals delayed myelination and brain atrophy. Currently there is no curative therapy to treat this devastating disease. Here, we present a female patient diagnosed with MDH2D after a stroke-like episode at 18 months. Trio-whole exome sequencing revealed compound heterozygous missense variants in the MDH2 gene: c.398C>T, p.(Pro133Leu) and c.445delinsACA, p.(Pro149Hisfs*22). MDH2 activity assay and oxygraphic analysis in patient's fibroblasts confirmed the variants were pathogenic. At the age of 36 months, a drug trial with triheptanoin was initiated and well tolerated. The patient's neurologic and biochemical phenotype improved and she had no further metabolic decompensations during the treatment period suggesting a beneficial effect of triheptanoin on MDH2D. Further preclinical and clinical studies are required to evaluate triheptanoin treatment for MDH2D and other TCA cycle and MAS defects.

7.
Analyst ; 146(13): 4326-4339, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34106111

RESUMO

BACKGROUND: Because of the interplay between mitochondrial respiration and cellular metabolism, the simultaneous monitoring of both cellular processes provides important insights for the understanding of biological processes. NMR flow systems provide a unique window into the metabolome of cultured cells. Simplified bioreactor construction based on commercially available flow systems increase the practicability and reproducibility of bioreactor studies using standard NMR spectrometers. We therefore aim at establishing a reproducible NMR bioreactor system for metabolic 1H-NMR investigations of small molecules and concurrent oxygenation determination by 19F-NMR, with in depth description and validation by accompanying measures. METHODS: We demonstrate a detailed and standardized workflow for the preparation and transfer of collagen based 3D cell culture of high cell density for perfused investigation in a 5 mm NMR tube. Self-constructed gas mixing station enables 5% CO2 atmosphere for physiological pH in carbon based medium and is perfused by HPLC pump. RESULTS & DISCUSSION: Implemented perfused bioreactor allows detection of perfusion rate dependent metabolite content. We show interleaved dynamic profiling of 26 metabolites and mitochondrial respiration. During constant perfusion, sequential injection of rotenone/oligomycin and 2-deoxy-glucose indicated immediate activation and deactivation of glycolytic rate and full inhibition of oxygen consumption. We show sensitivity to detect substrate degradation rates of major mitochondrial fuel pathways and were able to simultaneously measure cellular oxygen consumption.


Assuntos
Técnicas de Cultura de Células , Mitocôndrias , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes , Respiração
8.
Nature ; 588(7839): 712-716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328633

RESUMO

Altered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here we describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system1-6. The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines. To verify the cellular target, we performed exome sequencing of mutagenized cells and identified a cluster of amino acid substitutions in POLRMT that cause resistance to IMTs. We obtained a cryo-electron microscopy (cryo-EM) structure of POLRMT bound to an IMT, which further defined the allosteric binding site near the active centre cleft of POLRMT. The growth of cancer cells and the persistence of therapy-resistant cancer stem cells has previously been reported to depend on OXPHOS7-17, and we therefore investigated whether IMTs have anti-tumour effects. Four weeks of oral treatment with an IMT is well-tolerated in mice and does not cause OXPHOS dysfunction or toxicity in normal tissues, despite inducing a strong anti-tumour response in xenografts of human cancer cells. In summary, IMTs provide a potent and specific chemical biology tool to study the role of mtDNA expression in physiology and disease.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Microscopia Crioeletrônica , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Mitocondriais/efeitos dos fármacos , Humanos , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Especificidade por Substrato/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486073

RESUMO

Non-alcoholic fatty liver disease (NAFLD) leads to steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. For sedentary patients, lifestyle interventions combining exercise and dietary changes are a cornerstone of treatment. However, the benefit of exercise alone when dietary changes have failed is uncertain. We query whether exercise alone arrests the progression of NASH and tumorigenesis in a choline-deficient, high-fat diet (CD-HFD) murine model. Male C57Bl/6N mice received a control diet or CD-HFD for 12 weeks. CD-HFD mice were randomized further for 8 weeks of sedentariness (SED) or treadmill exercise (EXE). CD-HFD for 12 weeks produced NAFL. After 20 weeks, SED mice developed NASH and hepatic adenomas. Exercise attenuated the progression to NASH. EXE livers showed lower triglycerides and tumor necrosis factor-α expression, less fibrosis, less ballooning, and a lower NAFLD activity score than did SED livers. Plasma transaminases and triglycerides were lower. Exercise activated AMP-activated protein kinase (AMPK) with inhibition of mTORC1 and decreased S6 phosphorylation, reducing hepatocellular adenoma. Exercise activated autophagy with increased LC3-II/LC3-I and mitochondrial recruitment of phosphorylated PTEN-induced kinase. Therefore, exercise attenuates the transition from NAFL to NASH, improves biochemical and histological parameters of NAFLD, and impedes the progression of fibrosis and tumorigenesis associated with enhanced activation of AMPK signaling and favors liver autophagy. Our work supports the benefits of exercise independently of dietary changes.

10.
Cell Death Differ ; 27(6): 1965-1980, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31844253

RESUMO

In contrast to the "Warburg effect" or aerobic glycolysis earlier generalized as a phenomenon in cancer cells, more and more recent evidence indicates that functional mitochondria are pivotal for ensuring the energy supply of cancer cells. Here, we report that cancer cells with reduced autophagy-related protein 12 (ATG12) expression undergo an oncotic cell death, a phenotype distinct from that seen in ATG5-deficient cells described before. In addition, using untargeted metabolomics with ATG12-deficient cancer cells, we observed a global reduction in cellular bioenergetic pathways, such as ß-oxidation (FAO), glycolysis, and tricarboxylic acid cycle activity, as well as a decrease in mitochondrial respiration as monitored with Seahorse experiments. Analyzing the biogenesis of mitochondria by quantifying mitochondrial DNA content together with several mitochondrion-localizing proteins indicated a reduction in mitochondrial biogenesis in ATG12-deficient cancer cells, which also showed reduced hexokinase II expression and the upregulation of uncoupling protein 2. ATG12, which we observed in normal cells to be partially localized in mitochondria, is upregulated in multiple types of solid tumors in comparison with normal tissues. Strikingly, mouse xenografts of ATG12-deficient cells grew significantly slower as compared with vector control cells. Collectively, our work has revealed a previously unreported role for ATG12 in regulating mitochondrial biogenesis and cellular energy metabolism and points up an essential role for mitochondria as a failsafe mechanism in the growth and survival of glycolysis-dependent cancer cells. Inducing oncosis by imposing an ATG12 deficiency in solid tumors might represent an anticancer therapy preferable to conventional caspase-dependent apoptosis that often leads to undesirable consequences, such as incomplete cancer cell killing and a silencing of the host immune system.


Assuntos
Proteína 12 Relacionada à Autofagia/fisiologia , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
11.
Toxicol Appl Pharmacol ; 385: 114800, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678605

RESUMO

Laser tissue soldering is a novel treatment method for injuries of hollow organs such as cerebrovascular aneurysms. Nanomaterials contained in the solder are foreign to the body. Hence, it is indispensable to carefully examine possible adverse effects prior to introducing this technique. The aim of this study was to characterize the impact of different concentrations of polymer-coated silica nanoparticles (NPs) on mitochondrial function and integrity of brain endothelial cells using the rat brain capillary endothelial cell line rBCEC4. At maximal capacity, NP exposure resulted in a decrease in the oxygen consumption rate whereas glycolysis was not affected. In combination with a stressor, i.e. lack of glucose in the medium, NP exposure interfered primarily with glycolytic ATP generation rather than oxidative phosphorylation. Furthermore, NPs caused a metabolic shift towards a stressed phenotype, exhibiting increased levels of the oxygen consumption rate and the extracellular acidification rate compared to untreated controls. Overall, mitochondrial mass, distribution and morphology as well as intracellular ATP content were not altered. The mitochondrial membrane potential was increased after exposure to the highest NP concentration and the content of proteins involved in mitochondrial dynamics was changed slightly, indicating possible modifications of the fusion / fission balance. In conclusion, PCL-NP exposure changed mitochondrial respiration, especially under glucose deprivation, but did not affect mitochondrial morphology and distribution. Further studies are needed to investigate whether the functional effects are transient or long-term as this will be crucial for the use of these NPs in laser tissue soldering.


Assuntos
Encéfalo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/toxicidade , Polímeros/toxicidade , Dióxido de Silício/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Consumo de Oxigênio/efeitos dos fármacos , Ratos
12.
FEBS J ; 286(14): 2692-2710, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30993872

RESUMO

Genetic aberrations in the hepatocyte growth factor receptor tyrosine kinase MET induce oncogenic addiction in various types of human cancers, advocating MET as a viable anticancer target. Here, we report that MET signaling plays an important role in conferring a unique metabolic phenotype to cellular models expressing MET-activating mutated variants that are either sensitive or resistant toward MET small molecule inhibitors. MET phosphorylation downregulated by the specific MET inhibitor tepotinib resulted in markedly decreased viability and increased apoptosis in tepotinib-sensitive cells. Moreover, prior to the induction of MET inhibition-dependent cell death, tepotinib also led to an altered metabolic signature, characterized by a prominent reduction of metabolite ions related to amino sugar metabolism, gluconeogenesis, glycine and serine metabolism, and of numerous TCA cycle-related metabolites such as succinate, malate, and citrate. Functionally, a decrease in oxygen consumption rate, a reduced citrate synthase activity, a drop in membrane potential, and an associated misbalanced mitochondrial function were observed exclusively in MET inhibitor-sensitive cells. These data imply that interference with metabolic state can be considered an early indicator of efficient MET inhibition and particular changes reported here could be explored in the future as markers of efficacy of anti-MET therapies.


Assuntos
Metabolômica , Mitocôndrias/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridazinas/farmacologia , Pirimidinas/farmacologia , Animais , Ciclo do Ácido Cítrico , Camundongos , Mitocôndrias/fisiologia , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-met/fisiologia , Espécies Reativas de Oxigênio/metabolismo
13.
Metabolomics ; 15(3): 32, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30830487

RESUMO

INTRODUCTION: A decline in mitochondrial function represents a key factor of a large number of inborn errors of metabolism, which lead to an extremely heterogeneous group of disorders. OBJECTIVES: To gain insight into the biochemical consequences of mitochondrial dysfunction, we performed a metabolic profiling study in human skin fibroblasts using galactose stress medium, which forces cells to rely on mitochondrial metabolism. METHODS: Fibroblasts from controls, complex I and pyruvate dehydrogenase (PDH) deficient patients were grown under glucose or galactose culture condition. We investigated extracellular flux using Seahorse XF24 cell analyzer and assessed metabolome fingerprints using NMR spectroscopy. RESULTS: Incubation of fibroblasts in galactose leads to an increase in oxygen consumption and decrease in extracellular acidification rate, confirming adaptation to a more aerobic metabolism. NMR allowed rapid profiling of 41 intracellular metabolites and revealed clear separation of mitochondrial defects from controls under galactose using partial least squares discriminant analysis. We found changes in classical markers of mitochondrial metabolic dysfunction, as well as unexpected markers of amino acid and choline metabolism. PDH deficient cell lines showed distinct upregulation of glutaminolytic metabolism and accumulation of branched-chain amino acids, while complex I deficient cell lines were characterized by increased levels in choline metabolites under galactose. CONCLUSION: Our results show the relevance of selective culture methods in discriminating normal from metabolic deficient cells. The study indicates that untargeted fingerprinting NMR profiles provide physiological insight on metabolic adaptations and can be used to distinguish cellular metabolic adaptations in PDH and complex I deficient fibroblasts.


Assuntos
Fibroblastos/metabolismo , Galactose/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Mitocôndrias/metabolismo , Cultura Primária de Células , Piruvatos/metabolismo , Pele/metabolismo
14.
Metabolomics ; 15(4): 49, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30891647

RESUMO

The original version of this article contained an error in Table 2. The text in the second header line should read "GAL supernatant" and "GAL Medium" instead of "GLC supernatant" and "GLC Medium". The corrected Table 2 is given below. The original article has been corrected.

15.
Nat Commun ; 9(1): 2958, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054480

RESUMO

Optic atrophy 1 (OPA1) is a mitochondrial inner membrane protein that has an important role in mitochondrial fusion and structural integrity. Dysfunctional OPA1 mutations cause atrophy of the optic nerve leading to blindness. Here, we show that OPA1 has an important role in the innate immune system. Using conditional knockout mice lacking Opa1 in neutrophils (Opa1N∆), we report that lack of OPA1 reduces the activity of mitochondrial electron transport complex I in neutrophils. This then causes a decline in adenosine-triphosphate (ATP) production through glycolysis due to lowered NAD+ availability. Additionally, we show that OPA1-dependent ATP production in these cells is required for microtubule network assembly and for the formation of neutrophil extracellular traps. Finally, we show that Opa1N∆ mice exhibit a reduced antibacterial defense capability against Pseudomonas aeruginosa.


Assuntos
Trifosfato de Adenosina/metabolismo , Armadilhas Extracelulares/metabolismo , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Glicólise/fisiologia , Neutrófilos/metabolismo , Actinas/metabolismo , Animais , Antibacterianos/farmacologia , Medula Óssea , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/genética , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neutrófilos/citologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Espécies Reativas de Oxigênio/metabolismo
16.
FASEB J ; 32(9): 5143-5161, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29913563

RESUMO

The histidine triad nucleotide-binding protein 2 (HINT-2) is a mitochondrial adenosine phosphoramidase expressed in hepatocytes. The phenotype of Hint2 knockout ( Hint2-/-) mice includes progressive hepatic steatosis and lysine hyperacetylation of mitochondrial proteins, which are features of respiratory chain malfunctions. We postulated that the absence of HINT-2 induces a defect in mitochondria bioenergetics. Isolated Hint2-/- hepatocytes produced less ATP and generated a lower mitochondrial membrane potential than did Hint2+/+ hepatocytes. In extracellular flux analyses with glucose, the basal, ATP-linked, and maximum oxygen consumption rates (OCRs) were decreased in Hint2-/- hepatocytes and in HepG2 cells lacking HINT-2. Conversely, in HINT-2 overexpressing SNU-449 and HepG2 cells, the basal, ATP-linked, and maximum OCRs were increased. Similarly, with palmitate, basal and maximum OCRs were decreased in Hint2-/- hepatocytes, but they were increased in HINT-2 overexpressing HepG2 cells. When assayed with radiolabeled substrate, palmitate oxidation was reduced by 25% in Hint2-/- mitochondria. In respirometry assays, complex I- and II-driven, coupled and uncoupled respirations and complex IV KCN-sensitive respiration were reduced in Hint2-/- mitochondria. Furthermore, HINT-2 associated with cardiolipin and glucose-regulated protein 75 kDa. Our study shows decreased electron transfer and oxidative phosphorylation capacity in the absence of HINT-2. The bioenergetics deficit accumulated over time in hepatocytes lacking HINT-2 likely leads to the secondary outcome of steatosis.-Rajasekaran, R., Felser, A., Nuoffer, J.-M., Dufour, J.-F., St-Pierre, M. V. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.


Assuntos
Carcinoma Hepatocelular/metabolismo , Metabolismo Energético/fisiologia , Neoplasias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Carcinoma Hepatocelular/fisiopatologia , Linhagem Celular Tumoral , Respiração Celular/fisiologia , Transporte de Elétrons/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Neoplasias Hepáticas/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fosforilação Oxidativa
17.
Toxicol Sci ; 164(2): 477-488, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688484

RESUMO

Tolcapone and entacapone are catechol-O-methyltransferase inhibitors used in patients with Parkinson's disease. For tolcapone, patients with liver failure have been reported with microvesicular steatosis observed in the liver biopsy of 1 patient. We therefore investigated the impact of tolcapone and entacapone on fatty acid metabolism in HepaRG cells exposed for 24 h and on acutely exposed mouse liver mitochondria. In HepaRG cells, tolcapone induced lipid accumulation starting at 100 µM, whereas entacapone was ineffective up to 200 µM. In HepaRG cells, tolcapone-inhibited palmitate metabolism and activation starting at 100 µM, whereas entacapone did not affect palmitate metabolism. In isolated mouse liver mitochondria, tolcapone inhibited palmitate metabolism starting at 5 µM and entacapone at 50 µM. Inhibition of palmitate activation could be confirmed by the acylcarnitine pattern in the supernatant of HepaRG cell cultures. Tolcapone-reduced mRNA and protein expression of long-chain acyl-CoA synthetase 1 (ACSL1) and protein expression of ACSL5, whereas entacapone did not affect ACSL expression. Tolcapone increased mRNA expression of the fatty acid transporter CD36/FAT, impaired the secretion of ApoB100 by HepaRG cells and reduced the mRNA expression of ApoB100, but did not relevantly affect markers of fatty acid binding, lipid droplet formation and microsomal lipid transfer. In conclusion, tolcapone impaired hepatocellular fatty acid metabolism at lower concentrations than entacapone. Tolcapone increased mRNA expression of fatty acid transporters, inhibited activation of long-chain fatty acids and impaired very low-density lipoprotein secretion, causing hepatocellular triglyceride accumulation. The findings may be relevant in patients with a high tolcapone exposure and preexisting mitochondrial dysfunction.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Catecóis/farmacologia , Ácidos Graxos/metabolismo , Nitrilas/farmacologia , Tolcapona/farmacologia , Animais , Inibidores de Catecol O-Metiltransferase/toxicidade , Catecóis/toxicidade , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas VLDL/metabolismo , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Nitrilas/toxicidade , Palmitatos/metabolismo , Tolcapona/toxicidade
18.
J Nanobiotechnology ; 15(1): 49, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676089

RESUMO

BACKGROUND: Nanomedicine offers a promising tool for therapies of brain diseases, but potential effects on neuronal health and neuronal differentiation need to be investigated to assess potential risks. The aim of this study was to investigate effects of silica-indocyanine green/poly (ε-caprolactone) nanoparticles (PCL-NPs) engineered for laser tissue soldering in the brain before and during differentiation of SH-SY5Y cells. Considering adaptations in mitochondrial homeostasis during neuronal differentiation, metabolic effects of PCL-NP exposure before and during neuronal differentiation were studied. In addition, kinases of the PI3 kinase (PI3-K/Akt) and the MAP kinase (MAP-K/ERK) pathways related to neuronal differentiation and mitochondrial function were investigated. RESULTS: Differentiation resulted in a decrease in the cellular respiration rate and the extracellular acidification rate (ECAR). PCL-NP exposure impaired mitochondrial function depending on the time of exposure. The cellular respiration rate was significantly reduced compared to differentiated controls when PCL-NPs were given before differentiation. The shift in ECAR was less pronounced in PCL-NP exposure during differentiation. Differentiation and PCL-NP exposure had no effect on expression levels and the enzymatic activity of respiratory chain complexes. The activity of the glycolytic enzyme phosphofructokinase was significantly reduced after differentiation with the effect being more pronounced after PCL-NP exposure before differentiation. The increase in mitochondrial membrane potential observed after differentiation was not found in SH-SY5Y cells exposed to PCL-NPs before differentiation. The cellular adenosine triphosphate (ATP) production significantly dropped during differentiation, and this effect was independent of the PCL-NP exposure. Differentiation and nanoparticle exposure had no effect on superoxide levels at the endpoint of the experiments. A slight decrease in the expression of the neuronal differentiation markers was found after PCL-NP exposure, but no morphological variation was observed. CONCLUSIONS: PCL-NP exposure affects mitochondrial function depending on the time of exposure before and during neuronal differentiation. PCL-NP exposure during differentiation was associated with impaired mitochondrial function, which may affect differentiation. Considering the importance of adaptations in cellular respiration for neuronal differentiation and function, further studies are needed to unravel the underlying mechanisms and consequences to assess the possible risks including neurodegeneration.


Assuntos
Mitocôndrias/efeitos dos fármacos , Nanopartículas/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Poliésteres/metabolismo , Dióxido de Silício/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/toxicidade , Neurônios/citologia , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fosfofrutoquinases/metabolismo , Poliésteres/toxicidade , Dióxido de Silício/toxicidade , Superóxidos/metabolismo
19.
Toxicol In Vitro ; 42: 337-347, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28526448

RESUMO

The catechol-O-methyltransferase inhibitor tolcapone causes hepatotoxicity and mitochondrial damage in animal models. We studied the interaction of tolcapone with mitochondrial respiration in comparison to entacapone in different experimental models. In HepaRG cells (human cell-line), tolcapone decreased the ATP content (estimated IC50 100±15µM) and was cytotoxic (estimated IC50 333±45µM), whereas entacapone caused no cytotoxicity and no ATP depletion up to 200µM. Cytochrome P450 induction did not increase the toxicity of the compounds. In HepaRG cells, tolcapone (not entacapone) inhibited maximal complex I- and complex II-linked oxygen consumption. In intact mouse liver mitochondria, tolcapone stimulated state 2 complex II-linked respiration and both compounds inhibited state 3 respiration of complex IV. Mitochondrial uncoupling was confirmed for both compounds by stimulation of complex I-linked respiration in the presence of oligomycin. Inhibition of complex I, II and IV for tolcapone and of complex I and IV for entacapone was directly demonstrated in disrupted mouse liver mitochondria. In HepaRG cells, tolcapone-induced inhibition of mitochondrial respiration was associated with increased lactate and ROS production and hepatocyte necrosis. In conclusion, both compounds uncouple oxidative phosphorylation and inhibit mitochondrial enzyme complexes. Tolcapone is a more potent mitochondrial toxicant than entacapone. Mitochondrial toxicity is a possible mechanism for tolcapone-associated hepatotoxicity.


Assuntos
Benzofenonas/toxicidade , Inibidores de Catecol O-Metiltransferase/toxicidade , Catecóis/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Nitrilas/toxicidade , Nitrofenóis/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Transporte de Elétrons/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Tolcapona
20.
Front Physiol ; 7: 345, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559315

RESUMO

PURPOSE: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a carnitine analog inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats. METHODS: Male Sprague Dawley rats were treated daily with water (control rats; n = 12) or with 20 mg/100 g body weight THP (n = 12) via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion. RESULTS: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24%) and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption) was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected. CONCLUSIONS: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA