Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(26): e202400678, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38412002

RESUMO

The assembly of molybdenum polyoxometalates (POMs) has afforded large discrete nanoclusters with varied degrees of reduction such as the ~20 % reduced molybdenum blues. While many heterometals have been incorporated into these clusters to afford new properties, uranium has yet to be reported. Here we report the first uranium containing molybdenum blue clusters and the unique properties exhibited by this incorporation. The uranyl ion (UO2 2+) directs formation of Mo72U8, a square POM comprised of two faces connected by eight edge-sharing molybdenum dimers. Mo72U8, a chiral cluster, crystallizes as a racemic mixture and, in the solid state, has a 'negative' charge localized on one face of the cluster opposite the 'positively' charged face of another cluster. Using U(IV) as both heterometal and molybdenum reductant afforded crystals of Mo97U10, a wheel cluster with a heptamolybdate cap on one face. Mo97U10 dissociates in solution, losing the heptamolybdate, to form Mo90U10. Using more solvent during synthesis afforded crystals of Mo90U10S4 which, instead of heptamolybdate, contains four sulfate ions. Crystals of Mo90U10S4 undergo a dehydration induced phase change where clusters form a sheet through oxide bridges. Half of the bridges are cation-cation interactions between the uranyl oxygen atom and molybdenum, the first reported of this kind.

2.
Inorg Chem ; 61(40): 15953-15960, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047685

RESUMO

The first actinide borosulfates, (UO2)[B(SO4)2(SO3OH)] (TSUBOS-1) and (UO2)2[B2O(SO4)3(SO3OH)2] (TSUBOB-1), were synthesized solvothermally in oleum using UO3. The classical borosulfate crystal structure of TSUBOS-1 is partially consistent with an established conventional hierarchy. Uranyl pentagonal bipyramids limit the anionic network linkages and isolate sulfate tetrahedra within the anionic network. Therefore, the classical one-dimensional chain established in the hierarchy does not fully describe the structure. The structure of TSUBOB-1 is the first actinide borosulfate that contains an unconventional borate-to-borate bridging mode (denoted B-O-B) and a zero-dimensional oxoanionic unit consisting of one sulfate tetrahedron that shares vertices with two B-O-B bridged borate tetrahedra that each share a vertex with two sulfate tetrahedra. As this structure departs from the existing structural hierarchy, a modified approach for understanding the unconventional borosulfate substructure and dimensionality is proposed, together with a new graphical notation. In the course of our synthesis experiments, a novel uranyl disulfate compound (UO2)2[(S2O7)(SO3OH)2] (TSUDS) was isolated and characterized. The structure of TSUDS is a framework consisting of uranyl pentagonal bipyramids and sulfate tetrahedra. Each uranyl pentagonal bipyramid is surrounded by five sulfate tetrahedra, two of which share a vertex creating a disulfate with a S-O-S bridging mode. The uranyl bipyramids are linked to one another via the singular sulfate or disulfate groups.

3.
Inorg Chem ; 61(30): 11916-11922, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848217

RESUMO

Aqueous solutions of lithium uranyl triperoxide, Li4[UO2(O2)3] (LiUT), were irradiated with gamma rays at room temperature and found to form the uranyl peroxide cage cluster, Li24[(UO2)(O2)(OH)]24 (Li-U24). Raman spectroscopy and 18O labeling were used to identify the Raman-active vibrations of LiUT. With these assignments, the concentration of LiUT was tracked as a function of radiation dose. A discrepancy between monomer removal and cluster formation suggests that the reaction proceeds by the assembly of an intermediate. Non-negative matrix factorization was used to separate Raman spectra into components and resulted in the identification of a unique intermediate species. Much of the conversion appears to be driven by water radiolysis products, particularly the hydroxyl radical. This differs from the 18O-labeled copper-catalyzed formation of U24, which progresses at a steady rate with no observation of intermediates. Li-U24 in solution decomposes at high radiation doses resulting in a solid insoluble product similar to Na-compreignacite, Na2(UO2)6O4(OH)6·7H2O, which contains uranyl oxyhydroxy sheets.

4.
Inorg Chem ; 61(2): 882-889, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34965099

RESUMO

Single-crystal X-ray diffraction studies of pristine and γ-irradiated Ca2[UO2(O2)3]·9H2O reveal site-specific atomic-scale changes during the solid-state progression from a crystalline to X-ray amorphous state with increasing dose. Following γ-irradiation to 1, 1.5, and 2 MGy, the peroxide group not bonded to Ca2+ is progressively replaced by two hydroxyl groups separated by 2.7 Å (with minor changes in the unit cell), whereas the peroxide groups bonded to Ca2+ cations are largely unaffected by irradiation prior to amorphization, which occurs by a dose of 3 MGy. The conversion of peroxide to hydroxyl occurs through interaction of neighboring lattice H2O molecules and ionization of the peroxide O-O bond, which produces two hydroxyls, and allows isolation of the important monomer building block, UO2(O2)2(OH)24-, that is ubiquitous in uranyl capsule polyoxometalates. Steric crowding in the equatorial plane of the uranyl ion develops and promotes transformation to an amorphous phase. In contrast, γ-irradiation of solid Li4[(UO2)(O2)3]·10H2O results in a solid-state transformation to a well-crystallized peroxide-free uranyl oxyhydrate containing sheets of equatorial edge and vertex-sharing uranyl pentagonal bipyramids with likely Li and H2O in interlayer positions. The irradiation products of these two uranyl triperoxide monomers are compared via X-ray diffraction (single-crystal and powder) and Raman spectroscopy, with a focus on the influence of the Li+ and Ca2+ countercations. Highly hydratable and mobile Li+ yields to uranyl hydrolysis reactions, while Ca2+ provides lattice rigidity, allowing observation of the first steps of radiation-promoted transformation of uranyl triperoxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA