Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J West Afr Coll Surg ; 14(4): 370-379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309375

RESUMO

Background: The hippocampal alterations resulting from hydrocephalus are associated with various cognitive dysfunctions. Reduced learning and memory are early functional deficits that recover with time in experimental hydrocephalus. This study investigated the recovery processes of learning and memory loss in relation to the morphology of hippocampal pyramidal neurons and the degree of expansion of the ventricles. Materials and Methods: Hydrocephalus was induced in adult mice by intracisternal injection of sterile kaolin while controls received sham operation. Neurobehavioral tests for memory and learning were conducted, after which the animals were sacrificed in batches: 7 (acute) and 28 (subacute) days postinduction. After sacrifice, mice were categorized into mild and moderate hydrocephalus, and their fixed brain samples were processed for hematoxylin, eosin, and Nissl stains. Results: In moderate acute hydrocephalus, the indices of learning and memory were reduced escape latency (67.20 ± 12.83 s), number of platform crossing (4.000 ± 1.658), duration in platform quadrant (4.000 ± 1.658), and percent of total investigation (44.857% ± 3.981%) but not in the subacute stage. Pyknotic indices (PI) were significantly higher in the cornu ammonis (CA)1 and 3 regions in all hydrocephalic groups than in controls. However, within groups, PI was significantly higher only in the CA1 of moderate acute (28.149% ± 1.875%) compared to moderate subacute hydrocephalic group (12.903% ± 3.23%). Conclusion: Hydrocephalus caused cellular injury to the hippocampus associated with spatial learning and memory deficits. However, these functional deficits were partially reversed in moderate subacute hydrocephalus despite the persistence of the structural alterations in the CA1 and CA3 subregions.

2.
IBRO Neurosci Rep ; 17: 65-72, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39006923

RESUMO

Lead (Pb) is a ubiquitous, non-biodegradable heavy metal contaminant with a significant impact on both human and animal health. The adverse effect of lead on health and productivity of avian species has received little attention. Alchornea laxiflora (Benth) belongs to Euphorbiaceae family and grows naturally in the Nigerian rain forest. Decoction of the leaves is usually administered traditionally to treat inflammatory and infectious diseases. The ethanol extract of Alchornea laxiflora (EaAL) leaves was used in this study to ameliorate lead-induced neurodegeneration. Seven groups of 5-week-old cockerels (n=5) were treated for 6 weeks thus: Group A - Control (water only), Group B - (100 mg/kg of EaAL daily), Group C - (200 mg/kg of EaAL daily, p.o.), Group D - (1 % lead acetate in drinking water), Group E - (1 % lead acetate in drinking water and 100 mg/kg of EaAL daily), Group F - (1 % lead acetate and 200 mg/kg of EaAL daily), Group G - (1 % lead acetate and 100 mg/kg of Vitamin C). All administrations were per os birds were euthanized on day 43 by quick cervical dislocation. Histological stains (H&E and Nissl) and Black Gold II (BGII) histochemistry were used to assess alterations in the cerebrum and cerebellum. Administration of EaAL at the two concentrations resulted in a drastic reduction in the incidence of neuropathologies observed (e.g. pyknosis and multilayering of Purkinje cells, neuronal degeneration in hippocampus cerebrum and ependymal cells, distortion of meningeal epithelial cells, etc). BGII histochemistry revealed severe demyelination caused by the administration of lead acetate, while the two doses of EaAL showed significant restoration of myelin in the cerebellum. The amelioration of demyelination observed with the use of vitamin C was considerably lower than that recorded with the use of EaAL. The use of EaAL significantly ameliorated morphological alterations and demyelination caused by the administration of lead acetate, however, caution should be exercised in the administration, as individual species idiosyncrasies may arise and the tendency to pro-oxidation at 200 mg/kg when administered alone was observed in one subject.

3.
J Comp Neurol ; 532(2): e25578, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175813

RESUMO

Vanadium is a prevalent neurotoxic transition metal with therapeutic potentials in some neurological conditions. Hydrocephalus poses a major clinical burden in neurological practice in Africa. Its primary treatment (shunting) has complications, including infection and blockage; alternative drug-based therapies are therefore necessary. This study investigates the function and cytoarchitecture of motor and cerebellar cortices in juvenile hydrocephalic mice following treatment with varying doses of vanadium. Fifty juvenile mice were allocated into five groups (n = 10 each): controls, hydrocephalus-only, low- (0.15 mg/kg), moderate- (0.3 mg/kg), and high- (3.0 mg/kg) dose vanadium groups. Hydrocephalus was induced by the intracisternal injection of kaolin and sodium metavanadate administered by intraperitoneal injection 72hourly for 28 days. Neurobehavioral tests: open field, hanging wire, and pole tests, were carried out to assess locomotion, muscular strength, and motor coordination, respectively. The cerebral motor and the cerebellar cortices were processed for cresyl violet staining and immunohistochemistry for neurons (NeuN) and astrocytes (glial fibrillary acidic protein). Hydrocephalic mice exhibited body weight loss and behavioral deficits. Horizontal and vertical movements and latency to fall from hanging wire were significantly reduced, while latency to turn and descend the pole were prolonged in hydrocephalic mice, suggesting impaired motor ability; this was improved in vanadium-treated mice. Increased neuronal count, pyknotic cells, neurodegeneration and reactive astrogliosis were observed in the hydrocephalic mice. These were mostly mitigated in the vanadium-treated mice, except in the high-dose group where astrogliosis persisted. These results demonstrate a neuroprotective potential of vanadium administration in hydrocephalus. The molecular basis of these effects needs further exploration.


Assuntos
Hidrocefalia , Vanádio , Animais , Camundongos , Vanádio/efeitos adversos , Gliose/tratamento farmacológico , Caulim/efeitos adversos , Hidrocefalia/induzido quimicamente , Hidrocefalia/tratamento farmacológico , Neurônios
4.
Front Neurol ; 14: 1116727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846142

RESUMO

Background: Hydrocephalus is a neurological condition known to cause learning and memory disabilities due to its damaging effect on the hippocampal neurons, especially pyramidal neurons. Vanadium at low doses has been observed to improve learning and memory abilities in neurological disorders but it is uncertain whether such protection will be provided in hydrocephalus. We investigated the morphology of hippocampal pyramidal neurons and neurobehavior in vanadium-treated and control juvenile hydrocephalic mice. Methods: Hydrocephalus was induced by intra-cisternal injection of sterile-kaolin into juvenile mice which were then allocated into 4 groups of 10 pups each, with one group serving as an untreated hydrocephalic control while others were treated with 0.15, 0.3 and 3 mg/kg i.p of vanadium compound respectively, starting 7 days post-induction for 28 days. Non-hydrocephalic sham controls (n = 10) were sham operated without any treatment. Mice were weighed before dosing and sacrifice. Y-maze, Morris Water Maze and Novel Object Recognition tests were carried out before the sacrifice, the brains harvested, and processed for Cresyl Violet and immunohistochemistry for neurons (NeuN) and astrocytes (GFAP). The pyramidal neurons of the CA1 and CA3 regions of the hippocampus were assessed qualitatively and quantitatively. Data were analyzed using GraphPad prism 8. Results: Escape latencies of vanadium-treated groups were significantly shorter (45.30 ± 26.30 s, 46.50 ± 26.35 s, 42.99 ± 18.44 s) than untreated group (62.06 ± 24.02 s) suggesting improvements in learning abilities. Time spent in the correct quadrant was significantly shorter in the untreated group (21.19 ± 4.15 s) compared to control (34.15 ± 9.44 s) and 3 mg/kg vanadium-treated group (34.35 ± 9.74 s). Recognition index and mean % alternation were lowest in untreated group (p = 0.0431, p=0.0158) suggesting memory impairments, with insignificant improvements in vanadium-treated groups. NeuN immuno-stained CA1 revealed loss of apical dendrites of the pyramidal cells in untreated hydrocephalus group relative to control and a gradual reversal attempt in the vanadium-treated groups. Astrocytic activation (GFAP stain) in the untreated hydrocephalus group were attenuated in the vanadium-treated groups under the GFAP stain. Pyknotic index in CA1 pyramidal layer of untreated (18.82 ± 2.59) and 0.15mg/kg vanadium-treated groups (18.14 ± 5.92) were significantly higher than control (11.11 ± 0.93; p = 0.0205, p = 0.0373) while there was no significant difference in CA3 pyknotic index across all groups. Conclusion: Our results suggest that vanadium has a dose-dependent protective effect on the pyramidal cells of the hippocampus and on memory and spatial learning functions in juvenile hydrocephalic mice.

5.
Pediatr Neurosurg ; 55(5): 244-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108787

RESUMO

INTRODUCTION: Hydrocephalus is a disorder in which the circulation of cerebrospinal fluid is altered in a manner that leads to its accumulation in the ventricles and subarachnoid space. Its impact on the neuronal density and networks in the overlying cerebral cortex in a time-dependent neonatal hydrocephalic process is largely unknown. We hypothesize that hydrocephalus will affect the cytoarchitecture of the cerebral cortical mantle of neonatal hydrocephalic mice, which will in turn modify sensorimotor processing and neurobehaviour. OBJECTIVE: The purpose of this study is to probe the effect of hydrocephalus on 3 developmental milestones (surface righting reflex, cliff avoidance reflex, and negative geotaxis) and on cortical neuronal densities in neonatal hydrocephalic mice. METHODS: Hydrocephalus was induced in 1-day-old mice by intracisternal injection of sterile kaolin suspension. The pups were tested for reflex development and sensorimotor ability using surface righting reflex (PND 5, 7, and 9), cliff avoidance (PND 6), and negative geotaxis (PND 10 and 12) prior to their sacrifice on PND 7, 14, and 21. Neuronal density and cortical thickness in the sensorimotor cortex were evaluated using atlas-based segmentation of the neocortex and boundary definition in 4-µm paraffin-embedded histological sections with hematoxylin and eosin as well as cresyl violet stains. RESULTS: Surface righting and cliff avoidance activities were significantly impaired in hydrocephalic pups but no statistically significant difference was observed in negative geotaxis in both experimental and control pups. The neuronal density of the sensorimotor cortex was significantly higher in hydrocephalic mice than in age-matched controls on PND 14 and 21 (373.20 ± 21.54 × 10-6 µm2 vs. 157.70 ± 21.88 × 10-6 µm2; 230.0 ± 44.1 × 10-6 µm2 vs. 129.60 ± 3.72 × 10-6 µm2, respectively; p < 0.05). This was accompanied by reduction in the cortical thickness (µm) in the hydrocephalic mice on PND 7 (2,409 ± 43.37 vs. 3,752 ± 65.74, p < 0.05), PND 14 (2,035 ± 322.10 vs. 4,273 ± 67.26, p < 0.05), and PND 21 (1,676 ± 33.90 vs. 4,945 ± 81.79, p < 0.05) compared to controls. CONCLUSION: In this murine model of neonatal hydrocephalus, the quantitative changes in the cortical neuronal population may play a role in the observed changes in neurobehavioural findings.


Assuntos
Contagem de Células/métodos , Hidrocefalia/patologia , Caulim/toxicidade , Transtornos do Neurodesenvolvimento/patologia , Neurônios/patologia , Córtex Sensório-Motor/patologia , Animais , Animais Recém-Nascidos , Hidrocefalia/induzido quimicamente , Hidrocefalia/psicologia , Camundongos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/psicologia , Neurônios/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA