Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676628

RESUMO

PURPOSE: The aim of this study was to determine the genetic cause of early onset autosomal dominant hearing loss segregating in five-generation kindred of Chinese descent and provide preimplantation genetic testing (PGT)for them. METHODS: Clinical examination, pedigree analysis and exome sequencing were carried out on the family. Minigene-based splicing analysis, in vivo RNA analysis and protein structure prediction by molecular modeling were conducted on the candidate variant. PGT for the causative variation and chromosome aneuploidis based on SNP analysis has been used for avoidance of hearing loss in this family. RESULTS: All the affected individuals presented with moderate down-sloping hearing loss and whole-exome sequencing identified a novel splice-site variant c.5383+6T>A in the tested subjects within the TECTA locus. Genotyping of all the 32 family members confirmed segregation of this variant and the hearing loss phenotype in the extended family. Functional analysis of RNA and molecular modeling indicates that c.5383+6T>A is a pathogenic splice-site variant and should be considered as genetic cause of the hearing loss. Furthermore, a successful singleton pregnancy with no variation in TECTA c.5383+6 was established and a healthy male child was born by PGT. CONCLUSION: We have identified a novel variant c.5383+6T>A in TECTA ZA-ZP inter-domain, which could be attributable to the early-onset autosomal dominant hearing loss. The implications of our study are valuable in elucidating the disrupted RNA splicing and uncovering the genetic cause of hearing loss with TECTA pathogenic variants, as well as providing reproductive approaches to healthy offspring.

2.
Front Behav Neurosci ; 17: 1272748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025388

RESUMO

Background: Epilepsy is characterized by recurrent unprovoked seizures. Mutations in the voltage-gated sodium channel alpha subunit 1 (SCN1A) gene are the main monogenic cause of epilepsy. Type and location of variants make a huge difference in the severity of SCN1A disorder, ranging from the mild phenotype (genetic epilepsy with febrile seizures plus, GEFS+) to the severe phenotype (developmental and epileptic encephalopathies, DEEs). Dravet Syndrome (DS) is an infantile-onset DEE, characterized by drug-resistant epilepsy and temperature sensitivity or febrile seizures. Genetic test results reveal SCN1A variants are positive in 80% DS patients and DS is mainly caused by de novo variants. Methods: Trio-whole exome sequencing (WES) was used to detect variants which were associated with clinical phenotype of five probands with epilepsy or twitching. Then, Sanger sequencing was performed to validate the five novel SCN1A variants and segregation analysis. After analyzing the location of five SCN1A variants, the pathogenic potential was assessed. Results: In this study, we identified five novel SCN1A variants (c.4224G > C, c.3744_3752del, c.209del, c.5727_5734delTTTAAAACinsCTTAAAAAG and c.5776delT) as the causative variants. In the five novel SCN1A variants, four were de novo and the remaining one was inherited. All novel variants would be classified as "pathogenic" or "likely pathogenic." Conclusion: The five novel SCN1A variants will enrich the SCN1A mutations database and provide the corresponding reference data for the further genetic counseling.

3.
Front Genet ; 14: 1290949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179410

RESUMO

Background and purpose: Intellectual disability-7 (MRD7) is a subtype disorder of intellectual disability (MRD) involving feeding difficulties, hypoactivity, and febrile seizures at an age of early onset, then progressive intellectual and physical development deterioration. We purposed to identify the underlying causative genetic factors of three individuals in each Chinese family who presented with symptoms of intellectual disability and facial dysmorphic features. We provided prenatal diagnosis for the three families and genetic counseling for the prevention of this disease. Methods: We collected retrospective clinical diagnostic evidence for the three probands in our study, which included magnetic resonance imaging (MRI), computerized tomography (CT), electroencephalogram (EEG), and intelligence tests for the three probands in our study. Genetic investigation of the probands and their next of kin was performed by Trio-whole exome sequencing (WES). Sanger sequencing or quantitative PCR technologies were then used as the next step to verify the variants confirmed with Trio-WES for the three families. Moreover, we performed amniocentesis to explore the state of the three pathogenic variants in the fetuses by prenatal molecular genetic diagnosis at an appropriate gestational period for the three families. Results: The three probands and one fetus were clinically diagnosed with microcephaly and exhibited intellectual developmental disability, postnatal feeding difficulties, and facial dysmorphic features. Combining probands' clinical manifestations, Trio-WES uncovered the three heterozygous variants in DYRK1A: a novel variant exon3_exon4del p.(Gly4_Asn109del), a novel variant c.1159C>T p.(Gln387*), and a previously presented but rare pathogenic variant c.1309C>T p.(Arg437*) (NM_001396.5) in three families, respectively. In light of the updated American College of Medical Genetic and Genomics (ACMG) criterion, the variant of exon3_exon4del and c.1159C>T were both classified as likely pathogenic (PSV1+PM6), while c1309C>T was identified as pathogenic (PVS1+PS2_Moderate+PM2). Considering clinical features and molecular testimony, the three probands were confirmed diagnosed with MRD7. These three discovered variants were considered as the three causal mutations for MRD7. Prenatal diagnosis detected the heterozygous dominant variant of c.1159C>T p.(Gln387*) in one of the fetuses, indicating a significant probability of MRD7, subsequently the gestation was intervened by the parents' determination and professional obstetrical operation. On the other side, prenatal molecular genetic testing revealed wild-type alleles in the other two fetuses, and their parents both decided to sustain the gestation. Conclusion: We identified two novel and one rare mutation in DYRK1A which has broadened the spectrum of DYRK1A and provided evidence for the diagnosis of MRD7 at the molecular level. Besides, this study has supported the three families with MRD7 to determine the causative genetic factors efficiently and provide concise genetic counseling for the three families by using Trio-WES technology.

4.
Front Genet ; 13: 1073851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712884

RESUMO

To evaluate the performance of expanded non-invasive prenatal testing (expanded noninvasive prenatal testing, NIPT-Plus) in screening for fetal chromosomal abnormalities includes aneuploidies and copy number variations, a total of 23,116 pregnant women with a singleton pregnancy were recruited for NIPT-Plus. Screening positive results were verified by karyotype analysis and chromosomal microarray analysis after amniocentesis. A total of 264 pregnancies (1.14%) were positive results as predicted by NIPT-Plus, including 233 aneuploidies and 31 copy number variations. Following genetic counseling, 233 (88.26%) pregnant women underwent invasive prenatal diagnosis and 136 were verified as true positives, comprising 72 common trisomies (T21, T18, T13), 47 sex chromosomal abnormalities two rare autosomal aneuploidies (RATs) and 15 copy number variations The positive predictive value for common trisomies, SCAs, RATs and CNVs were 68.57%, 68.12%, 6.67% and 51.72%, respectively. Pregnant women with screen-positive results for common trisomies have higher rates of invasive prenatal diagnosis and pregnancy termination than those with positive results for SCAs, RATs, and CNVs. NIPT-Plus showed a good performance in detecting common trisomies, SCAs and also contributed to detecting pathogenic CNVs, but higher accuracy was required in the detection of RATs. In summary, this study provides a reference for the clinical application of NIPT-Plus for screening fetal chromosomal abnormalities in this region. Therefore, we suggest that NIPT-Plus could be widely used in clinical screening for fetal chromosomal abnormalities in combination with prenatal diagnosis and genetic counseling.

5.
Food Funct ; 11(2): 1764-1778, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32044910

RESUMO

Dietary methionine restriction (MR) has been reported to extend lifespan, reduce obesity and decrease oxidative damage to mtDNA in the heart of rats, and increase endogenous hydrogen sulfide (H2S) production in the liver and blood. H2S has many potential benefits in the pathophysiology of the cardiovascular system. MR also increases the level of homocysteine (Hcy) in the liver and plasma, but elevated plasma Hcy is a risk factor for cardiovascular disease. Therefore, this study aimed to determine the effect of MR on cardiac function and metabolic status in obese middle-aged mice and its possible mechanisms. C57BL/6J mice (aged approximately 28 weeks) were divided into six dietary groups: CON (0.86% methionine + 4% fat), CMR40 (0.52% methionine + 4% fat), CMR80 (0.17% methionine + 4% fat), HFD (0.86% methionine + 24% fat), HMR40 (0.52% methionine + 24% fat) and HMR80 (0.17% methionine + 24% fat) for 15 consecutive weeks. Our results showed that 80% MR improves systolic dysfunction in middle-aged obese mice and enhances myocardial energy metabolism. 80% MR also reduces myocardial oxidative stress and improves inflammatory response. In addition, 80% MR increased mice Hcy levels and activated remethylation and transsulfur pathways of Hcy and promoted endogenous H2S production in the heart. 40% MR has the same trend, but is not significant. Moreover 40% MR at variance with 80% MR, did not decrease the body weight in both control and high-fat diet mice. These findings suggest that MR can improve myocardial energy metabolism, reduce heart inflammation and oxidative stress by increasing cardiac H2S production, and improve cardiac dysfunction in middle-aged obese mice.


Assuntos
Dieta , Metionina , Miocárdio , Obesidade/metabolismo , Animais , Peso Corporal , Cardiomegalia/metabolismo , Metabolismo Energético/fisiologia , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Masculino , Metionina/administração & dosagem , Metionina/metabolismo , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Miocárdio/citologia , Miocárdio/metabolismo , Estresse Oxidativo/fisiologia
6.
Physiol Plant ; 157(1): 95-107, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26563616

RESUMO

MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre-miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat-specific miRNAs that were generated from 87 and 1088 pre-miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub-classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and the results indicate that some miRNAs are involved in the compatible wheat-Pst susceptibility interaction. Importantly, tae-miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion-binding protein, also exhibited upregulated expression but a divergent expression trend. PC-3P-7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat-Pst susceptibility interaction.


Assuntos
Basidiomycota/fisiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Doenças das Plantas/imunologia , Triticum/genética , Perfilação da Expressão Gênica , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/imunologia
7.
Biochim Biophys Acta ; 1839(1): 1-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269602

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases worldwide. Varieties with adult plant resistance (APR) maintain effective and durable disease resistance. APR to stripe rust in wheat cultivar XZ9104 (XZ) is associated with extensive hypersensitive cell death and production of reactive oxygen species in the host. MDHAR is an important gene in the AsA-GSH cycle, and it plays an important role in maintaining the reduced pool of AsA scavenging hydrogen peroxide. microRNAs (miRNAs) were shown to engage in post-transcriptional regulation by degrading target mRNAs or repressing gene translation in plants responding to abiotic/biotic stresses. Previously, two novel miRNAs (1136-P3 and PN-2013) were isolated in wheat and the target gene of them was determined using degradome sequencing technology. In this study, the target gene was isolated and characterized as TaMDHAR, a monodehydroascorbate reductase gene. We first demonstrated that the target gene could be cleaved by these two miRNAs in tobacco leaves experimentally. However, TaMDHAR was regulated by PN-2013, not 1136-P3, in wheat-Pst adult incompatible interaction according to the expression patterns. The TaMDHAR knockdown resulted in improved wheat resistance to Pst at the seedling stage, with no influence on 1136-P3 and PN-2013 expression. The TaMDHAR knockdown resulted in a much greater H2O2 accumulation and lower APX and CAT activities together with higher expression in several PR genes. We deduced that TaMDHAR could contribute to the APR of XZ through ROS metabolism as regulated by the AsA-GSH cycle.


Assuntos
Resistência à Doença/genética , MicroRNAs/genética , NADH NADPH Oxirredutases/genética , Triticum/genética , Basidiomycota/patogenicidade , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , NADH NADPH Oxirredutases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula , Triticum/enzimologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA