Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798413

RESUMO

Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.

2.
Neuroscience ; 539: 1-11, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38184069

RESUMO

Psilocybin has received attention as a treatment for depression, stress disorders and drug and alcohol addiction. To help determine the mechanisms underlying its therapeutic effects, here we examined acute effects of a range of behaviourally relevant psilocybin doses (0.1-3 mg/kg SC) on regional expression of Fos, the protein product of the immediate early gene, c-fos in brain areas involved in stress, reward and motivation in male rats. We also determined the cellular phenotypes activated by psilocybin, in a co-labeling analysis with NeuN, a marker of mature neurons, or Olig1, a marker of oligodendrocytes. In adult male Sprague-Dawley rats, psilocybin increased Fos expression dose dependently in several brain regions, including the frontal cortex, nucleus accumbens, central and basolateral amygdala and locus coeruleus. These effects were most marked in the central amygdala. Double labeling experiments showed that Fos was expressed in both neurons and oligodendrocytes. These results extend previous research by determining Fos expression in multiple brain areas at a wider psilocybin dose range, and the cellular phenotypes expressing Fos. The data also highlight the amygdala, especially the central nucleus, a key brain region involved in emotional processing and learning and interconnected with other brain areas involved in stress, reward and addiction, as a potentially important locus for the therapeutic effects of psilocybin. Overall, the present findings suggest that the central amygdala may be an important site through which the initial brain activation induced by psilocybin is translated into neuroplastic changes, locally and in other regions that underlie its extended therapeutic effects.


Assuntos
Encéfalo , Psilocibina , Ratos , Masculino , Animais , Psilocibina/farmacologia , Psilocibina/metabolismo , Ratos Sprague-Dawley , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Locus Cerúleo/metabolismo , Tonsila do Cerebelo/metabolismo
3.
Cell Death Dis ; 13(7): 639, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869056

RESUMO

Renal Cell Carcinoma (RCC) is the most common form of all renal cancer cases, and well-known for its highly aggressive metastatic behavior. SMOC2 is a recently described non-structural component of the extracellular matrix (ECM) that is highly expressed during tissue remodeling processes with emerging roles in cancers, yet its role in RCC remains elusive. Using gene expression profiles from patient samples, we identified SMOC2 as being significantly expressed in RCC tissue compared to normal renal tissue, which correlated with shorter RCC patient survival. Specifically, de novo protein synthesis of SMOC2 was shown to be much higher in the tubular epithelial cells of patients with biopsy-proven RCC. More importantly, we provide evidence of SMOC2 triggering kidney epithelial cells into an epithelial-to-mesenchymal transition (EMT), a phenotype known to promote metastasis. We found that SMOC2 induced mesenchymal-like morphology and activities in both RCC and non-RCC kidney epithelial cell lines. Mechanistically, treatment of RCC cell lines ACHN and 786-O with SMOC2 (recombinant and enforced expression) caused a significant increase in EMT-markers, -matrix production, -proliferation, and -migration, which were inhibited by targeting SMOC2 by siRNA. We further characterized SMOC2 activation of EMT to occur through the integrin ß3, FAK and paxillin pathway. The proliferation and metastatic potential of SMOC2 overexpressing ACHN and 786-O cell lines were validated in vivo by their significantly higher tumor growth in kidneys and systemic dissemination into other organs when compared to their respective controls. In principle, understanding the impact that SMOC2 has on EMT may lead to more evidence-based treatments and biomarkers for RCC metastasis.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Fenótipo
4.
Int J Mol Sci ; 21(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640520

RESUMO

Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Animais , Humanos
5.
Sci Rep ; 9(1): 16736, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723159

RESUMO

Fibrosis is the most common pathophysiological manifestation of Chronic Kidney Disease (CKD). It is defined as excessive deposition of extracellular matrix (ECM) proteins. Embedded within the ECM are a family of proteins called Matricellular Proteins (MCPs), which are typically expressed during chronic pathologies for ECM processing. As such, identifying potential MCPs in the pathological secretome of a damaged kidney could serve as diagnostic/therapeutic targets of fibrosis. Using published RNA-Seq data from two kidney injury mouse models of different etiologies, Folic Acid (FA) and Unilateral Ureteral Obstruction (UUO), we compared and contrasted the expression profile of various members from well-known MCP families during the Acute and Fibrotic injury phases. As a result, we identified common and distinct MCP expression signatures between both injury models. Bioinformatic analysis of their differentially expressed MCP genes revealed similar top annotation clusters from Molecular Function and Biological Process networks, which are those commonly involved in fibrosis. Using kidney lysates from FA- and UUO-injured mice, we selected MCP genes from our candidate list to confirm mRNA expression by Western Blot, which correlated with injury progression. Understanding the expressions of MCPs will provide important insight into the processes of kidney repair, and may validate MCPs as biomarkers and/or therapeutic targets of CKD.


Assuntos
Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Fibrose/metabolismo , Regulação da Expressão Gênica , Nefropatias/metabolismo , Obstrução Ureteral/metabolismo , Animais , Fibrose/etiologia , Fibrose/patologia , Ácido Fólico/toxicidade , Perfilação da Expressão Gênica , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obstrução Ureteral/etiologia , Obstrução Ureteral/patologia , Complexo Vitamínico B/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA