Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Melanoma Res ; 31(4): 298-308, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039939

RESUMO

Melanoma is a malignant tumor with high metastasis and mortality. Epithelial-mesenchymal transition (EMT) was reported to be involved in the growth and metastasis of melanoma. To investigate these sections further, we showed that E26 transformation specific 1 (ETS1) could regulate growth, metastasis and EMT process of melanoma by regulating microRNA(miR)-16/SRY-related HMG box (SOX) 4 expression. MiR-16, ETS1, SOX4 and nuclear factor κB (NF-κB) expression levels in melanoma cells were examined using qPCR. ETS1, SOX4, EMT-related proteins and NF-κB signaling pathway-related proteins were examined using western blot. Cell counting kit-8 assay, transwell assay were applied to evaluate the cell proliferation, migration and invasion of melanoma cells, respectively. Besides, a dual-luciferase reporter assay was employed to verify the binding relationship between ETS1 and miR-16, miR-16 and SOX4, miR-16 and NF-κB1. We showed that ETS1 and SOX4 were upregulated in melanoma cells, while miR-16 was downregulated. MiR-16 overexpression suppressed growth, metastasis and EMT process of melanoma. We found ETS1 could bind to the promoter region of miR-16 and inhibited its transcription. ETS1 silence could inhibit growth, metastasis and EMT process of melanoma, and inhibition of miR-16 could reverse the effects. Besides, miR-16 is directly bound to SOX4 and downregulated its expression. Rescued experiments confirmed that SOX4 overexpression abolished the inhibition effect of miR-16 mimics on growth, metastasis and EMT process of melanoma. Finally, NF-κB1 as the target of miR-16 mediated downstream biological responses. ETS1 activated NF-κB signaling pathway through miR-16 via targeting SOX4, thus promoting growth, metastasis and EMT of melanoma.


Assuntos
Transição Epitelial-Mesenquimal/genética , Melanoma/genética , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fatores de Transcrição SOXC/metabolismo , Neoplasias Cutâneas/genética , Humanos , Melanoma/patologia , Metástase Neoplásica , Neoplasias Cutâneas/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA