Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Front Immunol ; 15: 1393852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711526

RESUMO

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Assuntos
Neoplasias dos Genitais Femininos , Mitocôndrias , Organelas , Humanos , Feminino , Neoplasias dos Genitais Femininos/patologia , Neoplasias dos Genitais Femininos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Organelas/metabolismo , Sobrevivência Celular , Animais , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia , Metabolismo Energético , Transdução de Sinais
2.
Nano Lett ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717317

RESUMO

Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.

3.
Heart Lung ; 67: 46-52, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657400

RESUMO

BACKGROUND: Improving quality of life is vital for patients with atrial fibrillation (AF) after radiofrequency ablation. Quality of life can be affected not only by personal mastery but also by health promoting behavior as previously studied. However, it remains unclear whether health promoting behavior mediates the relationship between personal mastery and quality of life. OBJECTIVES: To explore whether health promoting behavior mediates the relationship between personal mastery and quality of life in patients with AF after radiofrequency ablation. METHODS: A cross-sectional design and convenience sampling were conducted at a tertiary hospital in China. Self-reported questionnaires were used to assess personal mastery, health promoting behavior and quality of life. SPSS and AMOS software were used for statistical analysis. RESULTS: A total of 202 patients with AF after radiofrequency ablation were enrolled (mean age 58.28 ± 12.70 years). The scores for personal mastery and quality of life were 22.52 ± 2.53 points and 62.58 ± 8.59 points, respectively, indicating a limited level. The health promoting behavior exhibited a moderate level, with scores averaging 103.82 ± 8.47 points. There was a positive correlation between the three variables (all P < 0.05). Health promoting behavior played a partial mediating role in the relationship between personal mastery and quality of life in patients with AF after radiofrequency ablation, accounting for 44.79 % of the total effect. CONCLUSIONS: In order to improve quality of life and prognosis, it is necessary to consider enhancing personal mastery and increasing patient compliance with health promoting behavior, which are important ways to improve their quality of life.

4.
J Orthop Translat ; 45: 236-246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601200

RESUMO

Objective: Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage. In order to find a safer and more effective drug to treat OA, we investigated the role of quercetin-3-O-ß-D-glucuronide (Q3GA) in OA. Methods: We used qRT-PCR and western blots to detect the effects of Q3GA on extracellular matrix (ECM) and inflammation related genes and proteins in interleukin-1ß (IL-1ß) induced chondrocytes. We determined the effect of Q3GA on the NF-κB pathway using western blots and immunofluorescence. Moreover, the effect of Q3GA on the Nrf2 pathway was evaluated through molecular docking, western blots, and immunofluorescence experiments and further validated by transfection with Nrf2 siRNA. Subsequently, we established a rat model of OA and injected Q3GA into the joint cavity for treatment. After 5 weeks of Q3GA administration, samples were obtained for micro-computed tomography scanning and histopathological staining to determine the effects of Q3GA on OA rats. Results: We found that Q3GA reduced the degradation of ECM and the expression of inflammatory related proteins and genes in primary chondrocytes of rats induced by IL-1ß, as well as the expression of nitric oxide (NO) and reactive oxygen species (ROS). It inhibited the activation of the NF-κB pathway by increasing the expression of Nrf2 in the nucleus. In addition, Q3GA inhibited cartilage degradation in OA rats and promoted cartilage repair. Conclusion: Q3GA attenuates OA by inhibiting ECM degradation and inflammation via the Nrf2/NF-κB axis. The translational potential of this article: The results of our study demonstrate the promising potential of Q3GA as a candidate drug for the treatment of OA and reveal its key mechanisms.

5.
Asian J Surg ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604849

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous liver tumor. The associations between histopathological feature and prognosis of ICC are limited. The present study aimed to investigate the prognostic significance of glandular structure and tumor budding in ICC. METHODS: Patients received radical hepatectomy for ICC were included. Glandular structure and tumor budding were detected by Hematoxylin-eosin staining. The Kaplan-Meier method and the Cox proportional hazards regression model were used to calculate the survival and hazard ratio. Based on the results of multivariate analysis, nomograms of OS and DFS were constructed. C-index and Akaike information criterion (AIC) were used to assess accuracy of models. RESULTS: A total of 323 ICC patients who underwent surgery were included in our study. Glandular structure was associated with worse overall survival (OS) [hazard ratio (HR): 2.033, 95% confidence interval (CI): 1.047 to 3.945] and disease-free survival (DFS) [HR: 1.854, 95% CI: 1.082 to 3.176]. High tumor budding was associated with worse DFS [HR: 1.636, 95%CI: 1.060 to 2.525]. Multivariate analysis suggested that glandular structure, tumor number, lymph node metastasis, and CA19-9 were independent risk factors for OS. Independent predictor factors for DFS were tumor budding, glandular structure, tumor number, and lymph node metastasis. The c-index (0.641 and 0.642) and AIC (957.69 and 1188.52) showed that nomograms of OS and DFS have good accuracy. CONCLUSION: High tumor budding and glandular structure are two important histopathological features that serve as prognostic factors for ICC patients undergoing hepatectomy.

6.
Mikrochim Acta ; 191(5): 272, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634999

RESUMO

A biosensing electrochemical platform for heat shock protein 70 (HSP70) has been developed by integrating a three-electrode indium tin oxide (ITO) on a chip. The platform includes modifications to the reference electrode and working electrode for the detection of HSP70. The new platform is constructed by assembly of HSP70 antibody on PS-AuNPs@Cys/Au indium tin oxide (ITO) electrode to create a high HSP70 sensitive surface. The PS-AuNPs@Cys/Au indium tin oxide (ITO) electrode is obtained by immersing the ITO electrode into the PS-AuNPs@Cys solution and performing constant potential deposition at -1.4 V (Ag/AgCl). The PS-AuNPs@Cys/Au film deposited on ITO glass provides a desirable substrate for the immobilization of the HSP70 antibody and improves the loading of antibody between PS-AuNPs@Cys/Au and the electrode resulting in a significant amplification. Under optimal conditions, the fabricated sensor demonstrates a linear range extending from 0.1 ng mL- 1 to 1000 ng mL- 1, with an impressive detection limit of 25.7 pg mL- 1 (S/N = 3). The developed immunoassay method successfully detected the HSP70 content in normal human blood samples and outperformed the ELISA method commonly used for clinical sample analysis.


Assuntos
Ouro , Nanopartículas Metálicas , Compostos de Estanho , Humanos , Anticorpos , Proteínas de Choque Térmico HSP70
8.
J Ethnopharmacol ; 327: 118016, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38462027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.


Assuntos
Codonopsis , Camundongos , Animais , Codonopsis/química , Galactose , Encéfalo , Envelhecimento , Autofagia
9.
Nurs Educ Perspect ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38501839

RESUMO

ABSTRACT: Telehealth allows access to high-quality, holistic patient care, including diagnosis, interventions, treatments, monitoring, and patient education. As the use of telehealth continues to increase, faculty considered the need for entry-level nursing students to be introduced to telehealth and its services. Faculty from the medical-surgical II and mental health courses developed a learning experience for students that blends concepts from both courses, as patients often present with multiple problems. The telehealth experience helped students utilize assessment skills, learn delegation, and connect concepts from two courses to provide care for a patient remotely.

10.
Exp Cell Res ; 437(2): 114009, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537745

RESUMO

Osteoarthritis (OA) is a degenerative disease that affects millions of individuals worldwide. Despite its prevalence, the exact causes and mechanisms behind OA are still not fully understood, resulting in a lack of effective treatments to slow down or halt disease progression. Recent research has discovered that extracellular vesicles (EVs) present in the circulation of young mice have a remarkable ability to activate musculoskeletal stem cells in elderly mice. Conversely, EVs derived from elderly mice do not exhibit the same potential, indicating that EVs obtained from young individuals may hold promise to activate aging cells in degenerative tissue. However, it remains unknown whether EVs derived from young individuals can also address cartilage degeneration caused by aging. In this study, we first evaluated EVs derived from young human plasma (YEVs) and EVs derived from old human plasma (OEVs) in an in vitro experiment using chondrocytes. The results revealed that YEVs effectively stimulated chondrocyte proliferation and migration, while OEVs from old plasma did not exhibit a similar effect. Given that OA represents a more complex inflammatory microenvironment, we further determine whether the benefits of YEVs on chondrocytes can be maintained in this context. Our findings indicate that YEVs have the ability to positively regulate chondrocyte function and protect them against apoptosis induced by IL-1ß and TNF-α in an in vitro OA model. Furthermore, we discovered that lyophilized EVs could be stored under mild conditions without any alterations in their physical characteristics. Considering the exceptional therapeutic effects and the wide availability of EVs from young plasma, they hold significant promise as a potential approach to activate chondrocytes and promote cartilage regeneration in early-stage OA.


Assuntos
Vesículas Extracelulares , Osteoartrite , Humanos , Camundongos , Animais , Condrócitos , Fator de Necrose Tumoral alfa/farmacologia , Cartilagem , Interleucina-1beta/farmacologia
11.
Exp Ther Med ; 27(4): 163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476901

RESUMO

[This retracts the article DOI: 10.3892/etm.2019.8348.].

12.
Eur J Med Chem ; 269: 116296, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38467086

RESUMO

Steroid hybrids have emerged as a type of advantageous compound as they could offer improved pharmacological and pharmaceutical properties. Here, we report a series of novel peptide-dehydroepiandrosterone hybrids, which would effectively induce endoplasmic reticulum stress (ERS) and lead to apoptosis with outstanding in vitro and in vivo anti-melanoma effects. The lead compound IId among various steroids conjugated with peptides and pyridines showed effective in vivo activity in B16 xenograft mice: in medium- and high-dose treatment groups (60 and 80 mg/kg), compound IId would significantly inhibit the growth of tumours by 98%-99% compared to the control group, with the highest survival rate as well. Further mechanism studies showed that compound IId would damage the endoplasmic reticulum and upregulate the ERS markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), which could further regulate caspase and Bcl-2 family proteins and lead to cell apoptosis. The compound IId was also proven to be effective in inhibiting B16 cell migration and invasion.


Assuntos
Apoptose , Retículo Endoplasmático , Humanos , Camundongos , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Peptídeos/farmacologia , Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/farmacologia
13.
Am J Pathol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417695

RESUMO

This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, the ferroptosis-suppressing iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3ß phosphorylation with elevated p53, myosin heavy chain-ß isozyme, IκB phosphorylation, and SLC7A11 as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.

14.
Am J Respir Cell Mol Biol ; 70(5): 364-378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300138

RESUMO

Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.


Assuntos
Ferroptose , Interleucina-6 , Pulmão , Poli I-C , Receptores Citoplasmáticos e Nucleares , Ferroptose/efeitos dos fármacos , Animais , Poli I-C/farmacologia , Interleucina-6/metabolismo , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos
15.
Aging Male ; 27(1): 2310308, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38317318

RESUMO

OBJECTIVE: As people get older, the innate and acquired immunity of the elderly are affected, resulting in immunosenescence. Prealbumin (PAB), transferrin (TRF), and albumin (ALB) are commonly used markers to monitor protein energy malnutrition (PEM). However, their relationship with the immune system has not been fully explored. METHODS: In our study, a total of 93 subjects (≥65 years) were recruited from Tongji Hospital between January 2015 and February 2017. According to the serum levels of these proteins (PAB, TRF, and ALB), we divided the patients into the high serum protein group and the low serum protein group. Then, we compared the percent expression of lymphocyte subsets between two groups. RESULTS: All the low serum protein groups (PAB, TRF, and ALB) had significant decreases in the percentage of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells and significant increases in the percentage of CD8+ cells, CD8+CD28- cells. PAB, TRF, and ALB levels revealed positive correlations with CD4/CD8 ratio, proportions of CD4+ cells, CD3+CD28+ cells, CD4+CD28+ cells, and negative correlation with proportions of CD8+ cells, CD8+CD28- cells. CONCLUSIONS: This study suggested PAB, TRF, and ALB could be used as immunosenescence indicators. PEM might accelerate the process of immunosenescence in elderly males.


Assuntos
Imunossenescência , Pré-Albumina , Masculino , Humanos , Idoso , Transferrina , Antígenos CD28 , Proteínas Sanguíneas
16.
Metab Syndr Relat Disord ; 22(3): 161-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294776

RESUMO

Evidence-based medicine shows that obesity is associated with a wide range of cardiovascular (CV) diseases. Obesity can lead to changes in cardiac structure and function, which can lead to obese cardiomyopathy, subclinical cardiac dysfunction, and even heart failure. It also increases the risk of atrial fibrillation and sudden cardiac death. Many invasive and noninvasive diagnostic methods can detect obesity-related heart disease at an early stage, so that appropriate measures can be selected to prevent adverse CV events. However, studies have shown a protective effect of obesity on clinical outcomes of CV disease, a phenomenon that has been termed the obesity paradox. The "obesity paradox" essentially refers to the fact that the classification of obesity defined by body mass index (BMI) does not consider the impact of obesity heterogeneity on CV disease prognosis, but simply puts subjects with different clinical and biochemical characteristics into the same category. In any case, indicators such as waist-to-hip ratio, ectopic body fat qualitative and quantitative, and CV fitness have been shown to be able to distinguish different CV risks in patients with the same BMI, which is convenient for early intervention in an appropriate way. A multidisciplinary approach, including lifestyle modification, evidence-based generic and novel pharmacotherapy, and surgical intervention, can improve CV outcomes in overweight/obese patients.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/terapia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/diagnóstico , Prognóstico , Sobrepeso/complicações , Índice de Massa Corporal , Fatores de Risco
17.
J Ovarian Res ; 17(1): 22, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263045

RESUMO

BACKGROUND: The mechanisms and risk factors underlying ovarian cancer (OC) remain under investigation, making the identification of new prognostic biomarkers and improved predictive factors critically important. Recently, circulating metabolites have shown potential in predicting survival outcomes and may be associated with the pathogenesis of OC. However, research into their genetic determinants is limited, and there are some inadequacies in understanding the distinct subtypes of OC. In this context, we conducted a Mendelian randomization study aiming to provide evidence for the relationship between genetically determined metabolites (GDMs) and the risk of OC and its subtypes. METHODS: In this study, we consolidated genetic statistical data of GDMs with OC and its subtypes through a genome-wide association study (GWAS) and conducted a two-sample Mendelian randomization (MR) analysis. The inverse variance weighted (IVW) method served as the primary approach, with MR-Egger and weighted median methods employed for cross-validation to determine whether a causal relationship exists between the metabolites and OC risk. Moreover, a range of sensitivity analyses were conducted to validate the robustness of the results. MR-Egger intercept, and Cochran's Q statistical analysis were used to evaluate possible heterogeneity and pleiotropy. False discovery rate (FDR) correction was applied to validate the findings. We also conducted a reverse MR analysis to validate whether the observed blood metabolite levels were influenced by OC risk. Additionally, metabolic pathway analysis was carried out using the MetaboAnalyst 5.0 software. RESULTS: In MR analysis, we discovered 18 suggestive causal associations involving 14 known metabolites, 8 metabolites as potential risk factors, and 6 as potential cancer risk reducers. In addition, three significant pathways, "caffeine metabolism," "arginine biosynthesis," and "citrate cycle (TCA cycle)" were associated with the development of mucinous ovarian cancer (MOC). The pathways "caffeine metabolism" and "alpha-linolenic acid metabolism" were associated with the onset of endometrioid ovarian cancer (OCED). CONCLUSIONS: Our MR analysis revealed both protective and risk-associated metabolites, providing insights into the potential causal relationships between GDMs and the metabolic pathways related to OC and its subtypes. The metabolites that drive OC could be potential candidates for biomarkers.


Assuntos
Cafeína , Neoplasias Ovarianas , Feminino , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Carcinoma Epitelial do Ovário , Biomarcadores
18.
Aging Dis ; 15(2): 612-639, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450933

RESUMO

Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.


Assuntos
Doença de Alzheimer , Senescência Celular , Humanos , Envelhecimento , Dasatinibe/farmacologia , Quercetina/farmacologia
19.
IEEE Trans Med Imaging ; 43(4): 1605-1618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133967

RESUMO

Typical tomographic image reconstruction methods require that the imaged object is static and stationary during the time window to acquire a minimally complete data set. The violation of this requirement leads to temporal-averaging errors in the reconstructed images. For a fixed gantry rotation speed, to reduce the errors, it is desired to reconstruct images using data acquired over a narrower angular range, i.e., with a higher temporal resolution. However, image reconstruction with a narrower angular range violates the data sufficiency condition, resulting in severe data-insufficiency-induced errors. The purpose of this work is to decouple the trade-off between these two types of errors in contrast-enhanced computed tomography (CT) imaging. We demonstrated that using the developed data consistency constrained deep temporal extrapolation method (AIRPORT), the entire time-varying imaged object can be accurately reconstructed with 40 frames-per-second temporal resolution, the time window needed to acquire a single projection view data using a typical C-arm cone-beam CT system. AIRPORT is applicable to general non-sparse imaging tasks using a single short-scan data acquisition.


Assuntos
Aeroportos , Algoritmos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
20.
J Fish Dis ; 47(1): e13863, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743602

RESUMO

Edwardsiella piscicida, an infectious bacterium, causes great economic losses to the aquaculture industry. Immersion bath which is the closest way to how the fish infect bacterial pathogens in the natural environment is an effective route of artificial infection. In this study, the dynamic process of E. piscicida infection, in the spotted sea bass (Lateolabrax maculatus) was evaluated via the immersion bath. The results showed that soaking the spotted sea bass with 3 × 106 CFU mL-1 E. piscicida for 30 min could artificially induce edwardsiellosis. The higher culture temperature (28.5 ± 0.5°C) or the longer bath time (30 min) would lead to higher mortality of fish. E.piscicida first invaded the gill, then entered the blood circulation to infect the spleen and kidney, where it is colonized, and gradually multiplied in the liver and brain. Meanwhile, the fluorescence in situ hybridization showed that the localization of E. piscicida in the gill and foregut after the immersion challenge proceeded from the exterior to the interior. The invasion of pathogens triggers the immune response of fish and causes tissue damage to the host. The quantitative real-time PCR results displayed an increase in the relative expression level of immune genes (NK-lysin, LZM, IgM and IgD). Otherwise, the most notable histopathological changes of the infected spotted sea bass were multifocal necrosis. Findings in this study broaden our understanding of the infection conditions of E. piscicida and its pathogenicity to the spotted sea bass.


Assuntos
Bass , Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Imersão , Hibridização in Situ Fluorescente , Doenças dos Peixes/microbiologia , Edwardsiella/genética , Infecções por Enterobacteriaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA