RESUMO
Objective: To compare the clinical efficacy of endoscopic retrograde cholangiopancreatography (ERCP) combined with laparoscopic cholecystectomy (LC) and laparoscopic common bile duct exploration and lithotomy (LCBDE) in the treatment of cholecystolithiasis combined with bile duct stones. Methods: From September 2018 to January 2022, 195 patients with cholecystolithiasis complicated with extrahepatic bile duct stones from Department of Department of General Surgery, Shanghai Jiading Central Hospital met the inclusion criteria, including 60 cases in the LC group and 86 cases in the LCBDE group. The general condition, operation success rate, complications and residual stone rate of the two groups were retrospectively analyzed. Results: In the simultaneous operation group, 58 patients successfully performed ERCP, and the indwelling rate of the abdominal drainage tube (41.7 % vs. 95.3 %) was significantly better than that in the LCBDE group. There was no significant difference in the conversion rate to open surgery, operation time, and intraoperative blood loss between the two groups. In the simultaneous surgery group, 4 patients (6.7 %) developed pancreatitis after ERCP, which was cured by conservative treatment. The pain score at 6 h after operation was significantly lower than that in the LCBDE group (3.9 ± 1.6 vs 6.5 ± 2.4). There were no significant differences in biliary leakage (1.7 % vs. 4.7 %), postoperative cholangitis (5.0 % vs. 5.8 %), incision infection (3.3 % vs. 3.5 %), and bile duct stone residue rate (5.0 % vs 3.5 %) between the two groups. There was no severe pancreatitis, second operation or death. The duration of hospital stay was shortened in the concurrent operation group (5.1 ± 2.3d vs 7.9 ± 3.7d), and the operation cost was significantly higher than that in the LCBDE group (48839.9 ± 8549.5 vs 34635.9 ± 5893.7 yuan). Conclusion: ERCP combined with LC and LCBDE are both safe and effective methods for the treatment of cholecystolithiasis combined with extrahepatic bile duct stones. The simultaneous operation group has certain advantages in patient comfort and rapid rehabilitation, which can be popularized in qualified units.
RESUMO
BACKGROUND: Reprogramming glucose metabolism, also known as the Warburg effect (aerobic glycolysis), is a hallmark of cancers. Increased tumor glycolysis not only favors rapid cancer cell proliferation but reprograms the immune microenvironment to enable tumor progression. The transcriptional factor ONECUT3 plays key roles in the development of the liver and pancreas, however, limited is known about its oncogenic roles, particularly metabolic reprogramming. METHODS: Immunohistochemistry and Western blotting are applied to determine the expression pattern of ONECUT3 and its clinical relevance in pancreatic ductal adenocarcinoma (PDAC). Knockdown and overexpression strategies are employed to determine the in vitro and in vivo functions of ONECUT3. Chromatin immunoprecipitation, luciferase reporter assay, and gene set enrichment analysis are used to decipher the molecular mechanisms. RESULTS: The glycolytic metabolism is inversely associated with T-cell infiltration in PDAC. ONECUT3 is identified as a key regulator for PDAC glycolysis and CD8+ T-cell infiltration. Genetic silencing of ONECUT3 inhibits cell proliferation, promotes cell apoptosis, and reduces glycolytic metabolism as evidenced by glucose uptake, lactate production, and extracellular acidification rate. Opposite effects of ONECUT3 are observed in overexpression studies. ONECUT3 enhances aerobic glycolysis via transcriptional regulation of PDK1. Targeting ONECUT3 effectively suppresses tumor growth, increases CD8+ T-cell infiltration, and potentiates anti-PD-1 therapy in PDAC. Pharmacological inhibition of PDK1 also shows a synergistic effect with anti-PD-1 therapy. In clinical setting, ONECUT3 is closely associated with PDK1 expression and T-cell infiltration in PDAC and acts as an independent prognostic factor. CONCLUSIONS: Our study reveals a previous unprecedented regulatory role of ONECUT3 in PDAC glycolysis and provides in vivo evidence that increased glycolysis is linked to an immunosuppressive microenvironment. Moreover, targeting ONECUT3-PDK1 axis may serve as a promising therapeutic approach for the treatment of PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Proliferação de Células/genética , Ácido Láctico , Glicólise , Microambiente TumoralRESUMO
For the cucumber harvesting robot, the identification of target information is one of important tasks in the automation of fruit-picking. In order to implement spatial fruit localization and quality discrimination in greenhouse, this paper presented a machine vision algorithm for the recognition and detection of cucumber fruits based on near-infrared spectral imaging. By comparing the spectral reflectance of cucumber plant (fruit, leaf and stem) from visible to infrared region (325-1 075 nm) measured by ASD FieldSpec Pro VNIR spectrometer, a monospectral near-infrared image at the 850 nm sensitive wavelength was captured to cope with the similar-color segmentation problem in complex environment. Then, a method of fruit extraction was developed on the basis of the following steps. Firstly, from the gray level histogram it was observed that the pixels of fruit distributed on the right are lesser than that of background, so "P parameter threshold method" was used to image segmentation. Subsequently, divided local image was partitioned into several sub-blocks by the application of adaptive template mining, which was feasible for processing the fruit with long-column feature. Finally, noises including parts of stem and leaf were eliminated using estimation condition of barycentre position and area size, proved by relative experiment In addition, the region for robotic grasping was established by gray variation between fruit-handle and fruit pedicel, as the quality feature was extracted with morphological characteristics of the centre-line length and the fruit flexure degree. A detecting experiment was carried out on 30 images with cucumber fruits and 10 images with no fruits, which were taken in a changing greenhouse environment. The results indicate that the accuracy rate of the recognition was 83.3% and 100%, while the success rate of effectively acquiring the grasping region was 83.3%, which can meet the demand of robotic fruit-harvesting.