Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Sex Med ; 12(4): qfae051, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39156235

RESUMO

Background: Observational studies indicated that serum uric acid (SUA) was associated with male sexual hormones and erectile dysfunction (ED). However, their relationship was still heterogeneous. Aim: This study conducted 2-sample univariate mendelian randomization (UVMR) and multivariate mendelian randomization (MVMR) to explore the causal relationship between SUA and sexual hormones as well as ED. Methods: Genetic variants associated with SUA were derived from the UK Biobank database (N = 437 354). Outcomes from the IEU Open GWAS and summary data sets were sexual hormones (sex hormone-binding globulin [SHBG], testosterone, estradiol [E2], follicle-stimulating hormone, luteinizing hormone) and ED, with 3301 to 625 650 participants. UVMR analysis primarily utilized the inverse variance weighted method, complemented by MVMR analysis. Thorough sensitivity analyses were carried out to ensure the reliability of results. Moreover, mediation analysis was conducted to estimate the mediated effect between SUA and outcomes. Outcomes: The primary outcomes included results of UVMR and MVMR analysis and mediation analysis, along with sensitivity analyses involving the Cochran Q test, the MR Egger intercept test, leave-1-out analysis, and the MR-PRESSO method (mendelian randomization pleiotropy residual sum and outlier). Results: UVMR analysis revealed that an elevated SUA level could decrease levels of SHBG (ß = -0.10, P = 1.70 × 10-7) and testosterone (ß = -0.10, P = 5.94 × 10-3) and had a positive causal effect on ED (odds ratio, 1.10; P = .018). According to reverse mendelian randomization results, increased levels of SHBG (ß = -0.06, P = 4.82 × 10-4) and E2 (ß = -0.04, P = .037) could also reduce SUA levels. As shown by MVMR analysis, SUA had a negative effect on SHBG and testosterone levels (P < .05), while the significant causal relationship between SUA and ED disappeared. Furthermore, SHBG mediated 98.1% of the effect of SUA on testosterone levels. Results of other mendelian randomization analyses were not statistically significant. No pleiotropy was found by sensitivity analysis in this study. Clinical Implications: Given the causal relationship between SUA and sexual hormones, we must focus on SUA and E2 levels in men, especially patients with hypogonadism and ED. Strengths and Limitations: This study evaluated the causal effect of SUA on male sexual hormones and ED genetically for the first time, clarifying the common biases in observational studies and confirming the negative relationship between SUA and testosterone level. Limitations include a population based on European ancestry, some crossover of the samples, and unobserved confounding factors. Conclusion: Genetic studies provide evidence for the causal relationship between SUA and male sexual hormones (SHBG, testosterone, E2), while the relationship between SUA and ED should be further evaluated.

2.
Mil Med Res ; 11(1): 58, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164787

RESUMO

Robot-assisted surgery has evolved into a crucial treatment for prostate cancer (PCa). However, from its appearance to today, brain-computer interface, virtual reality, and metaverse have revolutionized the field of robot-assisted surgery for PCa, presenting both opportunities and challenges. Especially in the context of contemporary big data and precision medicine, facing the heterogeneity of PCa and the complexity of clinical problems, it still needs to be continuously upgraded and improved. Keeping this in mind, this article summarized the 5 stages of the historical development of robot-assisted surgery for PCa, encompassing the stages of emergence, promotion, development, maturity, and intelligence. Initially, safety concerns were paramount, but subsequent research and engineering advancements have focused on enhancing device efficacy, surgical technology, and achieving precise multi modal treatment. The dominance of da Vinci robot-assisted surgical system has seen this evolution intimately tied to its successive versions. In the future, robot-assisted surgery for PCa will move towards intelligence, promising improved patient outcomes and personalized therapy, alongside formidable challenges. To guide future development, we propose 10 significant prospects spanning clinical, research, engineering, materials, social, and economic domains, envisioning a future era of artificial intelligence in the surgical treatment of PCa.


Assuntos
Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos , Humanos , Masculino , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/história , Procedimentos Cirúrgicos Robóticos/tendências , Neoplasias da Próstata/cirurgia , Inteligência Artificial/tendências
3.
Research (Wash D C) ; 7: 0460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165640

RESUMO

To meet the demands of the global energy transition, photothermal phase change energy storage materials have emerged as an innovative solution. These materials, utilizing various photothermal conversion carriers, can passively store energy and respond to changes in light exposure, thereby enhancing the efficiency of energy systems. Photothermal phase change energy storage materials show immense potential in the fields of solar energy and thermal management, particularly in addressing the intermittency issues of solar power. Their multifunctionality and efficiency offer broad application prospects in new energy technologies, construction, aviation, personal thermal management, and electronics.

4.
ACS Nano ; 18(32): 21399-21410, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094105

RESUMO

To address the escalating power consumption of processors in data centers and the growing emphasis on environmental sustainability, the prospective shift from traditional air-cooling to immersion liquid cooling necessitates multiple functional integrations in polymer-based thermal conductive materials. Here, drawing inspiration from mussels, we showed a copolymer, poly(dimethylsiloxane-co-dopamine methacrylate) (PDMS-DMA), with a variety of reversible molecular interactions and simply combined with liquid metal (EGaIn) can yield a flexible, waterproof, and electrically insulating thermal conductive composite. The obtained PDMS-DMA/EGaIn composites demonstrate a harmonious blend of attributes, including a low modulus (75.8 kPa), high thermal conductivity of 6.9 W m-1 K-1, and rapid room-temperature self-healing capabilities, capable of complete repair within 20 min, even under water. Based on its electrically insulating and water resistance properties, PDMS-DMA/EGaIn emerges as a promising candidate for efficient and stable heat transfer in both air and underwater thermal management. Consequently, this water-resistant polymer-based composite holds significance for application in thermal protective layers for future immersion liquid cooling systems.

5.
Opt Lett ; 49(15): 4358-4361, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090933

RESUMO

We propose a scheme for chirality discrimination via a topological invariant. The physical model is based on a three-level subspace of a molecule. By modulating the components of the control field with proper frequencies, two different two-level effective Hamiltonians are derived for the left-handed and the right-handed molecules. We parameterize the effective Hamiltonians with two angles and demonstrate that a topological quantum phase transition can be induced by tuning the effective Rabi frequency if the molecule is right-handed. This phenomenon provides a method to discriminate the chirality of the molecule by measuring a topological invariant, i.e., the Chern number, of the parametric manifold. Since the Chern number is robust against perturbations to the system, the scheme is insensitive to the systematic errors of the control fields, the deviations of the modulation frequencies, and decoherence of the molecule. Therefore, the scheme may provide useful perspectives to construct a robust discriminator of chiral molecules.

6.
Adv Mater ; : e2405655, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096109

RESUMO

Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder with considerable heterogeneity, in which over-generated reactive oxygen species (ROS) induce a cascade of pathological changes, including cellular apoptosis and inflammatory responses. Given the complex etiology of ASD, no effective treatment is available for ASD. In this work, a specific catalytic nanoenzyme, calcium hexacyanoferrate (III) nanocatalysts (CaH NCs), is designed and engineered for efficient ASD treatment. CaH NCs can mimic the activities of natural enzymes including superoxide dismutase, peroxidase, catalase, and glutathione peroxidase, which mitigates intracellular excessive ROS and regulates redox equilibrium. These CaH NCs modulate mitochondrial membrane potential, elevate B-cell lymphoma-2 levels, and suppress pro-apoptotic proteins, including Caspase-3 and B-cell lymphoma-2-associated X, thus effectively reducing cellular apoptosis. Importantly, CaH NCs alleviate inflammation by upregulating anti-inflammatory cytokine interleukin-10 and downregulating pro-inflammatory factors, resulting in attenuated activation of microglial and astrocytic and subsequent reduction in neuroinflammation. Subsequently, CaH NCs enhance social abilities, decrease anxiety levels, ameliorate repetitive behaviors, and improve learning and memory in ASD animal models through inflammation regulation and apoptosis inhibition. The CaH NCs in managing and preventing ASD represents a paradigm shift in autism treatment, paving the alternative but efficient way for clinical interventions in neurological conditions.

7.
J Matern Fetal Neonatal Med ; 37(1): 2388171, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39107137

RESUMO

OBJECTIVE: Preeclampsia (PE) poses a significant threat to maternal and perinatal health, so its early prediction, prevention, and management are of paramount importance to mitigate adverse pregnancy outcomes. This article provides a brief review spanning epidemiology, etiology, pathophysiology, and risk factors associated with PE, mainly discussing the emerging role of Artificial Intelligence (AI) deep learning (DL) technology in predicting PE, to advance the understanding of PE and foster the clinical application of early prediction methods. METHODS: Our narrative review comprehensively examines the PE epidemiology, etiology, pathophysiology, risk factors and predictive approaches, including traditional models and AI deep learning technology. RESULTS: Preeclampsia involves a wide range of biological and biochemical risk factors, among which poor uterine artery remodeling, excessive immune response, endothelial dysfunction, and imbalanced angiogenesis play important roles. Traditional PE prediction models exhibit significant limitations in sensitivity and specificity, particularly in predicting late-onset PE, with detection rates ranging from only 30% to 50%. AI models have exhibited a notable level of predictive accuracy and value across various populations and datasets, achieving detection rates of approximately 70%. Particularly, they have shown superior predictive capabilities for late-onset PE, thereby presenting novel opportunities for early screening and management of the condition. CONCLUSION: AI DL technology holds promise in revolutionizing the prediction and management of PE. AI-based approaches offer a pathway toward more effective risk assessment methods by addressing the shortcomings of traditional prediction models. Ongoing research efforts should focus on expanding databases and validating the performance of AI in diverse populations, leading to the development of more sophisticated prediction models with improved accuracy.


Assuntos
Pré-Eclâmpsia , Humanos , Gravidez , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/epidemiologia , Feminino , Aprendizado Profundo , Fatores de Risco , Inteligência Artificial , Medição de Risco/métodos , Valor Preditivo dos Testes
8.
ACS Omega ; 9(31): 33826-33832, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39130586

RESUMO

OBJECTIVE: Previous studies have reported that the inappropriate use of allopurinol may increase the risk of cerebrovascular accidents, but some studies have also confirmed that allopurinol is a protective factor against stroke. To clarify whether there is a relevant causal relationship between allopurinol and cerebral infarction, we conducted a two-sample Mendelian randomization (MR) study. METHODS: Data on single nucleotide polymorphisms (SNPs) associated with allopurinol and genome-wide association studies of cerebral infarction were obtained from the genome-wide association study (GWAS) web site. Five basic MR analyses were performed using MR-Egger regression, weighted median (WM1), inverse variance weighting (IVW), weighted mode (WM2), and simple mode. Sensitivity analysis was subsequently performed to detect horizontal pleiotropy, heterogeneity, and potential outliers. The final analysis results were mainly based on the IVW estimates. RESULTS: A total of 10 SNPs were used as instrumental variables (IVs). MR analysis [(IVW: odds ratio (OR) = 1.053, 95% confidence interval (CI): 1.019-1.088, P = 0.002), (WM1: OR = 1.053, 95% CI: 1.009-1.098, P = 0.017), (WM2: OR = 1.050, 95% CI: 1.008-1.095, P = 0.044), (MR Egger: Q = 4.285, P = 0.830)] showed a positive causal association between allopurinol and the risk of cerebral infarction. Sensitivity analysis such as horizontal pleiotropy and heterogeneity increased the reliability of this result. CONCLUSION: The results of this study provide direct evidence that there is a causal relationship between allopurinol and cerebral infarction and that allopurinol may increase the risk of cerebral infarction.

9.
Int Immunopharmacol ; 141: 112917, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137630

RESUMO

PURPOSE: This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS: RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS: Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid ß oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid ß oxidation in HCC. CONCLUSIONS: The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.

10.
Small ; : e2405627, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39139012

RESUMO

Photo-accelerated rechargeable batteries play a crucial role in fully utilizing solar energy, but it is still a challenge to fabricate dual-functional photoelectrodes with simultaneous high solar energy harvesting and storage. This work reports an innovative photo-accelerated zinc-ion battery (PAZIB) featuring a photocathode with a SnO2@MnO2 heterojunction. The design ingeniously combines the excellent electronic conductivity of SnO2 with the high energy storage and light absorption capacities of MnO2. The capacity of the SnO2@MnO2-based PAZIB is ≈598 mAh g-1 with a high photo-conversion efficiency of 1.2% under illumination at 0.1 A g-1, which is superior to that of most reported MnO2-based ZIB. The boosting performance is attributed to the synergistic effect of enhanced photogenerated carrier separation efficiency, improved conductivity, and promoted charge transfer by the SnO2@MnO2 heterojunction, which is confirmed by systematic experiments and theoretical simulations. This work provides valuable insights into the development of dual-function photocathodes for effective solar energy utilization.

11.
Phys Chem Chem Phys ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139147

RESUMO

The external electric field has emerged as a powerful tool for building molecular switches with excellent properties. In this work, we investigate the impact of an external electric field on the transition between lithium salt and electride-like molecule conformations in Li@corannulene. Remarkably, the distance between the Li atom and the corannulene bottom displays a sharp increase under the influence of an external electric field strength of F-z = 110 × 10-4 a.u. As the external electric field strength increases, the Li atom brings about different directions of charge transfer (CT). The natural population analysis (NPA) charge and the molecular electrostatic potential (ESP) results show that the intermolecular CT occurs from the Li atom to the corannulene with the F-z ranging from 0 to 100 × 10-4 a.u. Interestingly, when the external electric field reaches F-z = 110 × 10-4 a.u., the CT is oriented from the corannulene to the Li atom. Moreover, electron localization function (ELF) basins are presented under an F-z of 110 × 10-4 a.u., which indicates that Li@corannulene exhibits electride-like (e-⋯[Li@corannulene]+) molecules and lithiation salt (Li+[corannulene]-) under an F-z of 0 to 100 × 10-4 a.u. Significantly, the differences in charge transfer also contribute to a significant improvement in hyperpolarizabilities (ßtot) during the conformation transition from lithiation salt (Li+[corannulene]-) to electride-like (e-⋯[Li@corannulene]+) molecules. This study explores the potential of Li@corannulene as a promising second-order NLO material, and the external electric field provides an efficient strategy for designing and developing NLO switching devices.

12.
Neural Netw ; 179: 106587, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39111160

RESUMO

Continuous Sign Language Recognition (CSLR) is a task which converts a sign language video into a gloss sequence. The existing deep learning based sign language recognition methods usually rely on large-scale training data and rich supervised information. However, current sign language datasets are limited, and they are only annotated at sentence-level rather than frame-level. Inadequate supervision of sign language data poses a serious challenge for sign language recognition, which may result in insufficient training of sign language recognition models. To address above problems, we propose a cross-modal knowledge distillation method for continuous sign language recognition, which contains two teacher models and one student model. One of the teacher models is the Sign2Text dialogue teacher model, which takes a sign language video and a dialogue sentence as input and outputs the sign language recognition result. The other teacher model is the Text2Gloss translation teacher model, which targets to translate a text sentence into a gloss sequence. Both teacher models can provide information-rich soft labels to assist the training of the student model, which is a general sign language recognition model. We conduct extensive experiments on multiple commonly used sign language datasets, i.e., PHOENIX 2014T, CSL-Daily and QSL, the results show that the proposed cross-modal knowledge distillation method can effectively improve the sign language recognition accuracy by transferring multi-modal information from teacher models to the student model. Code is available at https://github.com/glq-1992/cross-modal-knowledge-distillation_new.

13.
RSC Adv ; 14(34): 24741-24748, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39114441

RESUMO

Al x CoCrFeNi (x = 0.1, 0.5 and 1) high-entropy alloys (HEAs) were prepared using a spark plasma sintering (SPS) technique combined with aerosol powder. Their microstructure and phase constituents were characterized using an X-ray diffractometer and SEM, and their tensile properties, hardness and compactness were tested. The results show that the crystal structure of the Al x CoCrFeNi HEAs changed significantly with the Al content, from the original single face-centered cubic FCC phase (Al0.1CoCrFeNi) to an FCC + BCC structure (Al0.5CoCrFeNi), and then to FCC + BCC + sigma (σ) phase structures (AlCoCrFeNi). Chemical composition analysis showed that the crystal structure transformation was related to the segregation caused by the increased Al content. The hardness of the Al x CoCrFeNi HEAs increases with increasing Al content, and the hardness of AlCoCrFeNi reaches a maximum of 507.3 HV. The tensile properties of the alloy show a trend of first increasing and then decreasing with increasing Al content, and the yield strength, ultimate tensile strength and elongation of the Al0.5CoCrFeNi alloy reach maximum values of 527.4 MP, 943.3 MPa and 28.2%, respectively. The fracture mechanism of the Al0.1CoCrFeNi and Al0.5CoCrFeNi alloys is typical ductile fracture, while that of the AlCoCrFeNi alloy is cleavage fracture. The compactness of the alloy increases with the Al content. The samples were also subjected to high-temperature water vapour corrosion, and corrosion products such as Al3Fe5O12, CoCr2O4 and NiCr2O4 were found in the Al0.1 and Al0.5 alloys, whereas no oxide peaks were detected using XRD for the Al1 alloy. It was also presumed that a very thin alumina film was generated on the surface of the Al1 alloy, preventing the oxidation of the sample, in combination with the analysis of SEM, EDS and XPS behaviour.

14.
Front Med (Lausanne) ; 11: 1420462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091288

RESUMO

Background: Cholelithiasis or cholecystectomy may contribute to the development of gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC) through bile reflux; however, current observational studies yield inconsistent findings. We utilized a novel approach combining meta-analysis and Mendelian randomization (MR) analysis, to assess the association between them. Methods: The literature search was done using PubMed, Web of Science, and Embase databases, up to 3 November 2023. A meta-analysis of observational studies assessing the correlations between cholelithiasis or cholecystectomy, and the risk factors for GERD, BE, and EACwas conducted. In addition, the MR analysis was employed to assess the causative impact of genetic pre-disposition for cholelithiasis or cholecystectomy on these esophageal diseases. Results: The results of the meta-analysis indicated that cholelithiasis was significantly linked to an elevated risk in the incidence of BE (RR, 1.77; 95% CI, 1.37-2.29; p < 0.001) and cholecystectomy was a risk factor for GERD (RR, 1.37; 95%CI, 1.09-1.72; p = 0.008). We observed significant genetic associations between cholelithiasis and both GERD (OR, 1.06; 95% CI, 1.02-1.10; p < 0.001) and BE (OR, 1.21; 95% CI, 1.11-1.32; p < 0.001), and a correlation between cholecystectomy and both GERD (OR, 1.04; 95% CI, 1.02-1.06; p < 0.001) and BE (OR, 1.13; 95% CI, 1.06-1.19; p < 0.001). After adjusting for common risk factors, such as smoking, alcohol consumption, and BMI in multivariate analysis, the risk of GERD and BE still persisted. Conclusion: Our study revealed that both cholelithiasis and cholecystectomy elevate the risk of GERD and BE. However, there is no observed increase in the risk of EAC, despite GERD and BE being the primary pathophysiological pathways leading to EAC. Therefore, patients with cholelithiasis and cholecystectomy should be vigilant regarding esophageal symptoms; however, invasive EAC cytology may not be necessary.

15.
Front Microbiol ; 15: 1434987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091297

RESUMO

Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.

16.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3857-3867, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099359

RESUMO

The study investigated the protective effect and mechanism of 2-phenylethyl-beta-glucopyranoside(Phe) from Huaizhong No.1 Rehmannia glutinosa on hypoxic pulmonary hypertension(PH), aiming to provide a theoretical basis for clinical treatment of PAH. Male C57BL/6N mice were randomly divided into normal group, model group, positive drug(bosentan, 100 mg·kg~(-1)) group, and low-and high-dose Phe groups(20 and 40 mg·kg~(-1)). Except for the normal group, all other groups were continuously subjected to model induction in a 10% hypoxic environment for 5 weeks, with oral administration for 14 days starting from the 3rd week. The cardiopulmonary function, right ventricular pressure, cough and asthma index, lung injury, cell apoptosis, oxidative stress-related indicators, immune cells, and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/hypoxic inducible factor 1α(HIF-1α) pathway-related proteins or mRNA levels were examined. Furthermore, hypoxia-induced pulmonary arterial smooth muscle cell(PASMC) were used to further explore the mechanism of Phe intervention in PH combined with PI3K ago-nist(740Y-P). The results showed that Phe significantly improved the cardiopulmonary function of mice with PH, decreased right ventricular pressure, cough and asthma index, and lung injury, reduced cell apoptosis, oxidative stress-related indicators, and nuclear levels of phosphorylated Akt(p-Akt) and phosphorylated mTOR(p-mTOR), inhibited the expression levels of HIF-1α and PI3K mRNA and proteins, and maintained the immune cell homeostasis in mice. Further mechanistic studies revealed that Phe significantly reduced the viability and migration ability of hypoxia-induced PASMC, decreased the expression of HIF-1α and PI3K proteins and nuc-lear levels of p-Akt and p-mTOR, and this effect was blocked by 740Y-P. Therefore, it is inferred that Phe may exert anti-PH effects by alleviating the imbalance of oxidative stress and apoptosis in lung tissues and regulating immune levels, and its mechanism may be related to the regulation of the PI3K/Akt/mTOR/HIF-1α pathway. This study is expected to provide drug references and research ideas for the treatment of PH.


Assuntos
Glucosídeos , Hipertensão Pulmonar , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Rehmannia , Serina-Treonina Quinases TOR , Animais , Masculino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Camundongos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rehmannia/química , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Glucosídeos/farmacologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Apoptose/efeitos dos fármacos
17.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949198

RESUMO

One new canthinone glycoside (1), together with six known compounds (2-7) including three lignans (2-4), two coumarins (5-6) and one phenol (7) was isolated from the root barks of Ailanthus altissima. The structure of new compound 1 was established by the interpretation of UV, IR, MS and NMR data, while its absolute configuration was determined by acid hydrolysis and GIAO NMR calculations with DP4+ probability analysis. The inhibitory effects of all compounds on Nitric oxide (NO) production were investigated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results showed that compounds 2 and 5 displayed NO production inhibitory activity with IC50 values of 30.1 and 15.3 µM, respectively.

18.
Small ; : e2403831, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949398

RESUMO

Lithium metal batteries are regarded as promising candidates for next-generation energy storage systems. However, their anodes are susceptible to interfacial instability due to significant volume changes, which significantly impacts the cycle life of lithium metal batteries. Here, a rapid method for the fabrication of 3D-hosts with interface modified layers is reported. A simple infiltration and heating process enables the transformation of copper foam into Zn-BDC-modified copper foam within 1 min, rendering it suitable for use as a current collector for lithium metal anodes. The Zn-BDC nanosheets with high lithiophilicity are uniformly distributed on the surface of the current collector, facilitating the uniform deposition of lithium and reducing the volume change. Consequently, the half cell exhibits a remarkably low overpotential (26 mV) at a current-density of 4 mA cm-2 and is cycled stably for 1000 h. Furthermore, it demonstrates a significant enhancement in performance in the LiFePO4 full cell. This study provides a crucial reference on the connection between the interfacial modification of the current collector and the lithium deposition behavior, which promotes the practicalization of lithium metal anodes.

19.
Toxicol Res (Camb) ; 13(4): tfae096, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38957783

RESUMO

Background: Contrast-induced acute kidney injury (CI-AKI) is a serious and common complication following the use of iodinated contrast media, with a 20% fatality rate. The function of long non-coding RNA HILPDA (lnc-HILPDA) in CI-AKI development was investigated in this study. Methods: CI-AKI models were constructed by iopromide treatment. Kidney pathological changes were analyzed by HE staining. TUNEL labeling and flow cytometry were used to examine cell apoptosis. CCK-8 assay was used to determine cell viability. The interactions between lnc-HILPDA, eIF4B, and XPO1 were verified by RIP or Co-IP assay. Results: Lnc-HILPDA was upregulated in CI-AKI, and its knockdown decreased contrast-trigged oxidative stress and apoptosis in HK-2 cells. Mechanically, lnc-HILPDA activated the NF-κB pathway by upregulating XPO1 through interacting with eIF4B. Moreover, the inhibitory effect of lnc-HILPDA downregulation on contrast-induced oxidative stress and apoptosis in HK-2 cells was weakened by XPO1 overexpression. Conclusion: Lnc-HILPDA accelerated CI-AKI progression by elevating XPO1 expression through eIF4B to activate NF-κB pathway.

20.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963329

RESUMO

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Assuntos
Cobre , Ferroptose , Hipóxia , Camundongos Endogâmicos C57BL , Animais , Cobre/metabolismo , Cobre/deficiência , Masculino , Camundongos , Hipóxia/metabolismo , Humanos , Células Hep G2 , Fígado/metabolismo , Fígado/patologia , Estresse Oxidativo , Metabolismo dos Lipídeos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Ferro/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , PPAR alfa/metabolismo , PPAR alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA