Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Mol Med ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38213137

RESUMO

BACKGROUND: The emergence of treatment resistance has hindered the efficacy of targeted therapies used to treat patients with hepatocellular carcinoma (HCC). OBJECTIVE: This study aimed to explore the mechanism of organoids constructed from lenvatinib-resistant HCC cells. METHODS: Hep3B cell and human HCC organoids were cultured and identified using hematoxylin and eosin staining and Immunohistochemistry. Lenvatinib-sensitive/ resistant Hep3B cells were constructed using lenvatinib (0, 0.1, 1, and 10 µM) and lenvatinib (0, 1, 10, and 100 µM). qRT-PCR and flow cytometry were utilized to determine HCC stem cell markers CD44, CD90, and CD133 expressions. Transcriptome sequencing was performed on organoids.-Western blot evaluated Notch pathwayrelated proteins (NOTCH1 and Jagged) expressions. Furthermore, DAPT, an inhibitor of the Notch pathway, was used to investigate the effects of lenvatinib on resistance or stemness in organoids and human HCC tissues. RESULTS: The organoids were successfully cultivated. With the increase of lenvatinib concentration, sensitive cell organoids were markedly degraded and ATP activity was gradually decreased, while there was no significant change in ATP activity of resistant cell organoids. CD44 expressions were elevated after lenvatinib treatment compared with the control group. KEGG showed that lenvatinib treatment of organoids constructed from Hep3B cells mainly activated the Notch pathway. Compared with the control group, NOTCH1 and Jagged expressions elevated, and ATP activity decreased after lenvatinib treatment. However, ATP activity was notably decreased after DAPT treatment. Moreover, DAPT inhibited lenvatinib resistance and the increase in the expressions of CD44 caused by lenvatinib. Besides, 100 µM lenvatinib significantly inhibited the growth and ATP activity of human HCC organoids, and DAPT increased the inhibitory effect of lenvatinib. CONCLUSION: Lenvatinib regulated resistance and stemness in organoids via the Notch pathway.

2.
Stem Cell Res Ther ; 14(1): 176, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422687

RESUMO

BACKGROUND: Dental pulp stem cells (DPSCs) play a crucial role in dentin-pulp complex regeneration. Further understanding of the mechanism by which DPSCs remain in a quiescent state could contribute to improvements in the dentin-pulp complex and dentinogenesis. METHODS: TSC1 conditional knockout (DMP1-Cre+; TSC1f/f, hereafter CKO) mice were generated to increase the activity of mechanistic target of rapamycin complex 1 (mTORC1). H&E staining, immunofluorescence and micro-CT analysis were performed with these CKO mice and littermate controls. In vitro, exosomes were collected from the supernatants of MDPC23 cells with different levels of mTORC1 activity and then characterized by transmission electron microscopy and nanoparticle tracking analysis. DPSCs were cocultured with MDPC23 cells and MDPC23 cell-derived exosomes. Alizarin Red S staining, ALP staining, qRT‒PCR, western blotting analysis and micro-RNA sequencing were performed. RESULTS: Our study showed that mTORC1 activation in odontoblasts resulted in thicker dentin and higher dentin volume/tooth volume of molars, and it increased the expression levels of the exosome markers CD63 and Alix. In vitro, when DPSCs were cocultured with MDPC23 cells, odontoblastic differentiation was inhibited. However, the inhibition of odontoblastic differentiation was reversed when DPSCs were cocultured with MDPC23 cells with mTORC1 overactivation. To further study the effects of mTORC1 on exosome release from odontoblasts, MDPC23 cells were treated with rapamycin or shRNA-TSC1 to inactivate or activate mTORC1, respectively. The results revealed that exosome release from odontoblasts was negatively correlated with mTORC1 activity. Moreover, exosomes derived from MDPC23 cells with active or inactive mTORC1 inhibited the odontoblastic differentiation of DPSCs at the same concentration. miRNA sequencing analysis of exosomes that were derived from shTSC1-transfected MDPC23 cells, rapamycin-treated MDPC23 cells or nontreated MDPC23 cells revealed that the majority of the miRNAs were similar among these groups. In addition, exosomes derived from odontoblasts inhibited the odontoblastic differentiation of DPSCs, and the inhibitory effect was positively correlated with exosome concentration. CONCLUSION: mTORC1 regulates exosome release from odontoblasts to inhibit the odontoblastic differentiation of DPSCs, but it does not alter exosomal contents. These findings might provide a new understanding of dental pulp complex regeneration.


Assuntos
Exossomos , Odontoblastos , Camundongos , Animais , Proteínas da Matriz Extracelular/metabolismo , Polpa Dentária/metabolismo , Exossomos/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Células Cultivadas
3.
World J Stem Cells ; 13(5): 342-365, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34136070

RESUMO

Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.

4.
FASEB J ; 35(2): e21325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33508145

RESUMO

The objectives of our study were to investigate the roles of mTORC1 in odontoblast proliferation and mineralization and to determine the mechanism by which mTORC1 regulates odontoblast mineralization. In vitro, MDPC23 cells were treated with rapamycin (10 nmol/L) and transfected with a lentivirus for short hairpin (shRNA)-mediated silencing of the tuberous sclerosis complex (shTSC1) to inhibit and activate mTORC1, respectively. CCK8 assays, flow cytometry, Alizarin red S staining, ALP staining, qRT-PCR, and western blot analysis were performed. TSC1-conditional knockout (DMP1-Cre+ ; TSC1f/f , hereafter CKO) mice and littermate control (DMP1-Cre- ; TSC1f/f , hereafter WT) mice were generated. H&E staining, immunofluorescence, and micro-CT analysis were performed. Transcriptome sequencing analysis was used to screen the mechanism of this process. mTORC1 inactivation decreased the cell proliferation. The qRT-PCR and western blot results showed that mineralization-related genes and proteins were downregulated in mTORC1-inactivated cells. Moreover, mTORC1 overactivation promoted cell proliferation and mineralization-related gene and protein expression. In vivo, the micro-CT results showed that DV/TV and dentin thickness were higher in CKO mice than in controls and H&E staining showed the same results. Mineralization-related proteins expression was upregulated. Transcriptome sequencing analysis revealed that p53 pathway-associated genes were differentially expressed in TSC1-deficient cells. By inhibiting p53 alone or both mTORC1 and p53 with rapamycin and a p53 inhibitor, we elucidated that p53 acts downstream of mTORC1 and that mTORC1 thereby promotes odontoblast mineralization. Taken together, our findings demonstrate that the role of mTORC1 in odontoblast proliferation and mineralization, and confirm that mTORC1 upregulates odontoblast mineralization via the p53 pathway.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Odontoblastos/metabolismo , Calcificação de Dente , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Dentina/citologia , Dentina/metabolismo , Camundongos , Odontoblastos/fisiologia , Transcriptoma , Proteína 1 do Complexo Esclerose Tuberosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA