Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984674

RESUMO

At present, public databases house an extensive repository of transcriptome data, with the volume continuing to grow at an accelerated pace. Utilizing these data effectively is a shared interest within the scientific community. In this study, we introduced a novel strategy that harnesses SNPs and InDels identified from transcriptome data, combined with sample metadata from databases, to effectively screen for molecular markers correlated with traits. We utilized 228 transcriptome datasets of Eriocheir sinensis from the NCBI database and employed the Genome Analysis Toolkit software to identify 96 388 SNPs and 20 645 InDels. Employing the genome-wide association study analysis, in conjunction with the gender information from databases, we identified 3456 sex-biased SNPs and 639 sex-biased InDels. The KOG and KEGG annotations of the sex-biased SNPs and InDels revealed that these genes were primarily involved in the metabolic processes of E. sinensis. Combined with SnpEff annotation and PCR experimental validation, a highly sex-biased SNP located in the Kelch domain containing 4 (Klhdc4) gene, CHR67-6415071, was found to alter the splicing sites of Klhdc4, generating two splice variants, Klhdc4_a and Klhdc4_b. Additionally, Klhdc4 exhibited robust expression across the ovaries, testes, and accessory glands. The sex-biased SNPs and InDels identified in this study are conducive to the development of unisexual cultivation methods for E. sinensis, and the alternative splicing event caused by the sex-biased SNP in Klhdc4 may serve as a potential mechanism for sex regulation in E. sinensis. The analysis strategy employed in this study represents a new direction for the rational exploitation and utilization of transcriptome data in public databases.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790629

RESUMO

Eriocheir sinensis, a key species in China's freshwater aquaculture, is threatened by various diseases, which were verified to be closely associated with oxidative stress. This study aimed to investigate the response of E. sinensis to hydrogen peroxide (H2O2)-induced oxidative stress to understand the biological processes behind these diseases. Crabs were exposed to different concentrations of H2O2 and their antioxidant enzyme activities and gene expressions for defense and immunity were measured. Results showed that activities of antioxidant enzymes-specificallysuperoxide dismutase (SOD), catalase (CAT), total antioxidant capacity(T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-Px)-varied with exposure concentration and duration, initially increasing then decreasing. Notably, SOD, GSH-Px, and T-AOC activities dropped below control levels at 96 h. Concurrently, oxidative damage markers, including malondialdehyde (MDA), H2O2, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, increased with exposure duration. The mRNA expression of SOD, CAT, and GSH-Px also showed an initial increase followed by a decrease, peaking at 72 h. The upregulation of phenoloxidaseloxidase (proPO) and peroxinectin (PX) was also detected, but proPO was suppressed under high levels of H2O2. Heat shock protein 70 (HSP70) expression gradually increased with higher H2O2 concentrations, whereas induced nitrogen monoxide synthase (iNOS) was upregulated but decreased at 96 h. These findings emphasize H2O2's significant impact on the crab's oxidative and immune responses, highlighting the importance of understanding cellular stress responses for disease prevention and therapy development.

3.
Environ Res ; 251(Pt 2): 118717, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518910

RESUMO

Antibiotic resistance genes (ARGs) serving as a newly recognized pollutant that poses potential risks to global human health, which in the paddy soil can be potentially altered by different agricultural production patterns. To elucidate the impacts and mechanisms of the widely used and sustainable agricultural production pattern, namely integrated rice-fish farming, on the antibiotic resistomes, we applied metagenomic sequencing to assess ARGs, mobile genetic elements (MGEs), bacteria, archaea, and viruses in paddy soil. There were 20 types and 359 subtypes of ARGs identified in paddy soil. The integrated rice-fish farming reduced the ARG and MGE diversities and the abundances of dominant ARGs and MGEs. Significantly decreased ARGs were mainly antibiotic deactivation and regulator types and primarily ranked level IV based on their potential threat to human health. The integrated rice-fish farming decreased the alpha diversities and altered microbial community compositions. MGEs, bacteria, archaea, and virus exhibited significant correlations with ARGs, while integrated rice-fish farming effectively changed their interrelationships. Viruses, bacteria, and MGEs played crucial roles in affecting the ARGs by the integrated rice-fish farming. The most crucial pathway by which integrated rice-fish farming affected ARGs was through the modulation of viral communities, thereby directly or indirectly influencing ARG abundance. Our research contributed to the control and restoration of ARGs pollution from a new perspective and providing theoretical support for the development of clean and sustainable agricultural production.


Assuntos
Archaea , Bactérias , Resistência Microbiana a Medicamentos , Oryza , Microbiologia do Solo , Archaea/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Animais , Agricultura/métodos , Vírus/genética , Ecossistema , Peixes
4.
Sci Total Environ ; 917: 170393, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280587

RESUMO

Hydrogen peroxide (H2O2), a prevalent reactive oxygen species (ROS) found in natural aquatic environments, has garnered significant attention for its potential toxicity in fish. However, the molecular mechanisms underlying this toxicity are not yet comprehensively understood. This study aimed to assess H2O2-induced liver dysfunction in common carp (Cyprinus carpio) and elucidate the underlying molecular mechanisms via biochemical and transcriptomic analyses. Common carp were divided into normal control (NC) and H2O2-treated groups (1 mM H2O2), the latter of which was exposed to H2O2 for 1 h per day over a period of 14 days. Serum biochemical analyses indicated that exposure to H2O2 resulted in moderate liver damage, characterized by elevated alanine aminotransferase (ALT) activity and lowered albumin (Alb) level. Concurrently, H2O2 exposure induced oxidative stress and modified the hepatic metabolic enzyme levels. Transcriptome analysis highlighted that 1358 and 1188 genes were significantly downregulated and upregulated, respectively, in the H2O2-treated group. These differentially expressed genes (DEGs) were significantly enriched in protein synthesis and a variety of metabolic functions such as peptide biosynthetic processes, protein transport, ribonucleoprotein complex biogenesis, oxoacid metabolic processes, and tricarboxylic acid metabolic processes. Dysregulation of protein synthesis is principally associated with the downregulation of three specific pathways: ribosome biogenesis, protein export, and protein processing in the endoplasmic reticulum (ER). Furthermore, metabolic abnormalities were primarily characterized by inhibition of the citrate cycle (TCA) and fatty acid biosynthesis. Significantly, anomalies in both protein synthesis and metabolic function may be linked to aberrant regulation of the insulin signaling pathway. These findings offer innovative insights into the mechanisms underlying H2O2 toxicity in aquatic animals, contributing to the assessment of ecological risks.


Assuntos
Carpas , Hepatopatias , Animais , Peróxido de Hidrogênio/farmacologia , Carpas/metabolismo , Estresse Oxidativo , Perfilação da Expressão Gênica , Fígado/metabolismo , Hepatopatias/metabolismo
5.
Antioxidants (Basel) ; 12(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38136215

RESUMO

Proanthocyanidins (Pros), a natural polyphenolic compound found in grape seed and other plants, have received significant attention as additives in animal feed. However, the specific mechanism by which Pros affect fish health remains unclear. Therefore, the aim of this study was to investigate the potential effects of dietary Pro on common carp by evaluating biochemical parameters and multi-omics analysis. The results showed that Pro supplementation improved antioxidant capacity and the contents of polyunsaturated fatty acids (n-3 and n-6) and several bioactive compounds. Transcriptomic analysis demonstrated that dietary Pro caused an upregulation of the sphingolipid catabolic process and the lysosome pathway, while simultaneously downregulating intestinal cholesterol absorption and the PPAR signaling pathway in the intestines. Compared to the normal control (NC) group, the Pro group exhibited higher diversity in intestinal microbiota and an increased relative abundance of Cetobacterium and Pirellula. Furthermore, the Pro group had a lower Firmicutes/Bacteroidetes ratio and a decreased relative abundance of potentially pathogenic bacteria. Collectively, dietary Pro improved antioxidant ability, muscle nutrients, and the diversity and composition of intestinal microbiota. The regulation of lipid metabolism and improvement in muscle nutrients were linked with changes in the intestinal microbiota.

6.
Mar Biotechnol (NY) ; 25(6): 1136-1146, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923816

RESUMO

Transposable elements (TEs) are mobile genetic elements that exist in the host genome and exert considerable influence on the evolution of the host genome. Since crustaceans, including decapoda, are considered ideal models for studying the relationship between adaptive evolution and TEs, TEs were identified and classified in the genomes of eight decapoda species and one diplostraca species (as the outgroup) using two strategies, namely homology-based annotation and de novo annotation. The statistics and classification of TEs showed that their proportion in the genome and their taxonomic composition in decapoda were different. Moreover, correlation analysis and transcriptome data demonstrated that there were more PIF-Harbinger TEs in the genomes of Eriocheir sinensis and Scylla paramamosain, and the expression patterns of PIF-Harbingers were significantly altered under air exposure stress conditions. These results signaled that PIF-Harbingers expanded in the genome of E. sinensis and S. paramamosain and might be related to their air exposure tolerance levels. Meanwhile, sequence alignment revealed that some Jockey-like sequences (JLSs) with high similarity to specific regions of the White spot syndrome virus (WSSV) genome existed in all eight decapod species. At the same time, phylogenetic comparison exposed that the phylogenetic tree constructed by JLSs was not in agreement with that of the species tree, and the distribution of each branch was significantly different. The abovementioned results signaled that these WSSV-specific JLSs might transfer horizontally and contribute to the emergence of WSSV. This study accumulated data for expanding research on TEs in decapod species and also provided new insights and future direction for the breeding of stress-resistant and disease-resistant crab breeds.


Assuntos
Decápodes , Vírus da Síndrome da Mancha Branca 1 , Animais , Elementos de DNA Transponíveis/genética , Filogenia , Genômica , Vírus da Síndrome da Mancha Branca 1/genética , Decápodes/genética , Evolução Molecular
7.
Sci Data ; 10(1): 843, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036563

RESUMO

To gain a deeper understanding of the genetic factors influencing the growth and development of Eriocheir sinensis, a well-known species of hairy crab found in Yangcheng Lake, this study focused on the de novo genome and full-length transcriptome information of the selected subjects. Specifically, Yangcheng Lake hairy crabs were chosen as the experimental samples. Initially, a genome analysis was performed, resulting in the identification of gene fragments with a combined length of 1266,092,319 bp. Subsequently, a transcriptome analysis was conducted on a mixture of tissues from four different sites, namely muscle, brain, eye, and heart, to further investigate the genetic characteristics at the transcriptome level. The Pacific Biosciences (Pacio) single-molecule real-time sequencing system generated a total of 36.93 G sub-fragments and 175,90041 effective inserts. This research contributes to the indirect comprehension of genetic variations underlying individual traits. Furthermore, a comparison of the obtained data with relevant literature emphasizes the advantages of this study and establishes a basis for further investigations on the Chinese mitten crab.


Assuntos
Braquiúros , Perfilação da Expressão Gênica , Transcriptoma , Humanos , Genoma , Genômica , Braquiúros/genética
8.
Microb Ecol ; 86(4): 3111-3127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37878052

RESUMO

Intestinal microbiota plays an important role in promoting digestion, metabolism, and immunity. Intestinal microbiota and fatty acids are important indicators to evaluate the health and nutritional composition of Procambarus clarkii. They have been shown to be strongly influence by environmental and genetic factors. However, it is not clear whether environmental factors have a greater impact on the intestinal microbiota and fatty acid composition of crayfish. The link between the intestinal microbial communities and fatty acid (FA) compositions of red swamp crayfish from different geographical has not yet been studied. Thus, the current paper focuses on the influence of different environments on the fatty acids in muscles of crayfish and the possible existence between gut microbiota and fatty acids. Therefore, in this study, we compared the fatty acid compositions and intestinal microbiota of five crayfish populations from different geographical locations. The results were further analyzed to determine whether there is a relationship between geographical location, fatty acid compositions and intestinal microbiota. The gut microbial communities of the crayfish populations were characterized using 16S rRNA high-throughput gene sequencing. The results showed that there were significant differences in FA compositions of crayfish populations from different geographical locations. A similar trend was observed in the gut microbiome, which also varied significantly according to geographic location. Interestingly, the analysis revealed that there was a relationship between fatty acid compositions and intestinal microbes, revealed by alpha diversity analysis and cluster analysis. However, further studies of the interactions between the P. clarkii gut microbiota and biochemical composition are needed, which will ultimately reveal the complexity of microbial ecosystems with potential applications in aquaculture and species conservation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Astacoidea/genética , RNA Ribossômico 16S/genética , Ácidos Graxos
9.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511105

RESUMO

Stocking density is a crucial factor affecting productivity in aquaculture, and high stocking density is a stressor for aquatic animals. In this study, we aimed to investigate the effects of stocking densities on oxidative stress and energy metabolism in the gills of Cherax quadricarinatus under rice-crayfish farming. The C. quadricarinatus were reared at low density (LD), medium density (MD), and high density (HD) for 90 days. The results showed that the superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and malondialdehyde (MDA) levels were higher in the HD group than those in the LD group. Transcriptomic analysis revealed 1944 upregulated and 1157 downregulated genes in the gills of the HD group compared to the LD group. Gene ontology (GO) enrichment analysis indicated that these differentially expressed genes (DEGs) were significantly associated with ATP metabolism. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis also showed that high stocking density resulted in the dysregulation of oxidative phosphorylation. Furthermore, high stocking density upregulated six lipid metabolism-related pathways. Overall, our findings, despite the limited number of samples, suggested that high stocking density led to oxidative stress and dysregulation of energy metabolism in the gills of C. quadricarinatus under rice-crayfish co-culture. Alteration in energy metabolism may be an adaptive response to adverse farming conditions.


Assuntos
Astacoidea , Oryza , Animais , Astacoidea/metabolismo , Oryza/genética , Brânquias/metabolismo , Técnicas de Cocultura , Perfilação da Expressão Gênica , Metabolismo Energético/genética , Transcriptoma
10.
Front Physiol ; 14: 1163055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520823

RESUMO

The change in temperature will change the composition of intestinal microorganisms of juvenile Eriocheir sinensis, and the composition of intestinal microorganisms will affect the growth and development of juvenile crabs. In order to explore the relationship between intestinal microorganisms and growth of E. sinensis at different temperatures, the status of growth and intestinal microflora of juvenile E. sinensis reared at different water temperatures (15 °C, 23 °C, and 30 °C) were compared in this study. The results showed that the respective survival rate of juvenile E. sinensis in the three water temperature groups was 100%, 87.5%, and 64.44%. Moreover, the molting rate increased with an increase in water temperature, which was at 0%, 10%, and 71.11% for the three respective temperature groups. The average weight gain rate showed an overall increasing trend with the increase of water temperature. Moreover, the final fatness of the crabs in the 30 °C water temperature group was significantly lower than that in the 15 °C and 23 °C groups (p < 0.05); there was no significant difference in the liver-to-body ratio among the three groups. The results of the alpha diversity analysis of the 16S rRNA data revealed that there was no significant difference in the intestinal microbial abundance among the three water temperature groups; however, the intestinal microbial diversity in the 23 °C water temperature group was significantly lower than that in the 15 °C and 30 °C groups. At the phylum level, the dominant flora of the three groups was Firmicutes, Proteobacteria, and Bacteroidota. At the genus level, the abundance of Parabacteroides and Aeromonas in the intestine of the crabs in the 30 °C water temperature group was significantly higher than that in the 15 °C and 23 °C groups (p < 0.05). The function prediction showed that the main functional diversity of intestinal microflora of juvenile E. sinensis in the three water temperature groups was similar and mainly involved in metabolic-related functions, but there were still differences in the effects of water temperature on functional pathways such as metabolism, immunity, and growth among each group, either promoting or inhibiting. In conclusion, different water temperatures can affect the composition and function of intestinal flora of E. sinensis, and 23 °C-30 °C is the optimal water temperature for the growth of juvenile E. sinensis.

11.
Chemosphere ; 335: 138962, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37230304

RESUMO

Human activities can cause zinc (Zn) contamination of aquatic environments. Zn is an essential trace metal, but effects of environmentally relevant Zn exposure on the brain-intestine axis in fish are poorly understood. Here, six-month-old female zebrafish (Danio rerio) were exposed to environmentally relevant Zn concentrations for six weeks. Zn significantly accumulated in the brain and intestine, causing anxiety-like behaviors and altered social behaviors. Zn accumulation altered levels of neurotransmitters, including serotonin, glutamate, and γ-aminobutyric acid, in the brain and intestine, and these changes were directly associated with changes in behavior. Zn caused oxidative damage and mitochondrial dysfunction, and impaired NADH dehydrogenase, thereby dysregulating the energy supply in brain. Zn exposure resulted in nucleotide imbalance and dysregulation of DNA replication and the cell cycle, potentially impairing the self-renewal of intestinal cells. Zn also disturbed carbohydrate and peptide metabolism in the intestine. These results indicate that chronic exposure to Zn at environmentally relevant concentrations dysregulates the bidirectional interaction of the brain-intestine axis with respect to neurotransmitters, nutrients, and nucleotide metabolites, thereby causing neurological disorder-like behaviors. Our study highlights the necessity to evaluate the negative impacts of chronic environmentally relevant Zn exposure on the health of humans and aquatic animals.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Humanos , Lactente , Peixe-Zebra/metabolismo , Zinco/metabolismo , Encéfalo/metabolismo , Nucleotídeos/metabolismo , Neurotransmissores/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-36906248

RESUMO

Dissolved oxygen (DO) is crucial for the survival of Chinese mitten crab (Eirocheir sinensis); low DO levels adversely affect the health of these crabs. In this study, we evaluated the underlying response mechanism of E. sinensis to acute hypoxic stress by analyzing antioxidant parameters, glycolytic indicators, and hypoxia signaling factors. The crabs were exposed to hypoxia for 0, 3, 6, 12, and 24 h and reoxygenated for 1, 3, 6, 12, and 24 h. The hepatopancreas, muscle, gill, and hemolymph were sampled at different exposure times to detect the biochemical parameters and gene expression. The results showed that the activity of catalase, antioxidants, and malondialdehyde in tissues significantly increased under acute hypoxia and gradually decreased during the reoxygenation phase. Under acute hypoxic stress, glycolysis indices, including hexokinase (HK), phosphofructokinase, pyruvate kinase (PK), pyruvic acid (PA), lactate dehydrogenase (LDH), lactic acid (LA), succinate dehydrogenase (SDH), glucose, and glycogen in the hepatopancreas, hemolymph, and gills increased to varying degrees but recovered to the control levels after reoxygenation. Gene expression data showed that hypoxia signaling pathway-related genes, including hypoxia-inducible factor-1α/ß (HIF1α/ß), prolyl hydroxylase (PHD), factor inhibiting hypoxia-inducible factor (FIH), and glycolysis-related factors (HK and PK) were upregulated, showing that the HIF signaling pathway was activated under hypoxic conditions. In conclusion, acute hypoxic exposure activated the antioxidant defense system, glycolysis, and HIF pathway to respond to adverse conditions. These data contribute to elucidating the defense and adaptive mechanisms of crustaceans to acute hypoxic stress and reoxygenation.


Assuntos
Antioxidantes , Glucose , Hipóxia , Animais , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Transdução de Sinais
13.
Front Endocrinol (Lausanne) ; 14: 1293749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250741

RESUMO

Objective: As one of the most important environmental signals, photoperiod plays a crucial role in regulating the growth, metabolism, and survival of organisms. The photoperiod shifts with the transition of the seasons. The difference in photoperiod between summer and winter is the greatest under natural conditions. However, the effect of photoperiod on Huanghe carp (Cyprinus carpio haematopterus) was paid little attention. We investigated the impact of artificial manipulation of seasonal photoperiod on Huanghe carp by integrating growth performance, intestinal flora, and intestinal metabolome. Method: We conducted an 8-week culture experiment with summer photoperiod (14 h light:10 h dark, n = 60) as the control group and winter photoperiod (10 h light:14 h dark, n = 60) based on the natural laws. Results: Winter photoperiod provokes significant weight increases in Huanghe carp. The altered photoperiod contributed to a significant increase in triglyceride and low-density lipoprotein cholesterol levels and the gene expressions of lipid metabolism in the intestine of Huanghe carp. 16s rDNA sequencing revealed that winter photoperiod diminished intestinal flora diversity and altered the abundance. Specifically, the relative abundances of Fusobacteria and Acidobacteriota phyla were higher but Proteobacteria, Firmicutes, and Bacteroidetes phyla were reduced. Analogously, photoperiodic changes induced a significant reduction in the Pseudomonas, Vibrio, Ralstonia, Acinetobacter, and Pseudoalteromonas at the genus level. Additionally, metabolomics analysis showed more than 50% of differential metabolites were associated with phospholipids and inflammation. Microbiome and metabolome correlation analyses revealed that intestinal microbe mediated lipid metabolism alteration. Conclusion: The winter photoperiod induced intestinal flora imbalance and lipid metabolism modification, ultimately affecting the growth of Huanghe carp. This study provides new insights into the effects of seasonal photoperiodic alteration on the well-being of fish.


Assuntos
Carpas , Microbioma Gastrointestinal , Microbiota , Animais , Fotoperíodo , Estações do Ano
14.
Ecotoxicol Environ Saf ; 248: 114303, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403304

RESUMO

Zinc is an essential nutrient for life, but over-accumulation can result in toxicity. Anthropogenic activities can increase zinc concentrations in aquatic environments (e.g., to ∼0.46-1.00 mg/L), which are above the safe level of 0.1 mg/L. We investigated the behavior and physiology of zebrafish (Danio rerio) in response to environment-related exposure to zinc chloride at 0.0 (Ctrl), 1.0 (ZnCl2-low) and 1.5 (ZnCl2-high) mg/L for 6 weeks (the zinc conversion ratio of zinc chloride is ∼0.48 and the nominal (measured) values were: Ctrl, 0 (∼0.01); ZnCl2-low, 0.48 (∼0.51); ZnCl2-high, 0.72 (∼0.69) mg/L). Low-zinc exposure resulted in significantly increased locomotion and fast moving behaviors, while high-zinc exposure resulted in significantly increased aggression and freezing frequency. Single cell RNA-seq of neurons, astrocytes, and oligodendrocytes of the brain revealed expression of genes related to ion transport, neuron generation, and immunomodulation that were heterogeneously regulated by zinc exposure. Astrocyte-induced central nervous system inflammation potentially integrated neurotoxicity and behavior. Integrated analyses of brain and hepatic transcriptional signatures showed that genes (and pathways) dysregulated by zinc were associated with sensory functions, circadian rhythm, glucose and lipid metabolism, and amyloid ß-protein clearance. Our results showed that environment-related zinc contamination can be heterogeneously toxic to brain cells and can disturb coordination of brain-liver physiology. This may disrupt neurobehavior and cause a neurodegeneration-like syndrome in adult zebrafish.


Assuntos
Transtornos Cronobiológicos , Peixe-Zebra , Animais , Zinco/toxicidade , Peptídeos beta-Amiloides , Encéfalo , Agressão , Fígado
15.
Appl Opt ; 61(18): 5409-5418, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256108

RESUMO

Ambient noise and illumination inhomogeneity will seriously affect the high-precision measurement of structured light 3D morphology. To overcome the influences of these factors, a new, to the best of our knowledge, sub-pixel extraction method for the center of laser stripes is proposed. First, an automatic segmentation model of structured light stripe based on the UNet deep learning network and level set is constructed. Coarse segmentation of laser stripes using the UNet network can effectively segment more complex scenes and automatically obtain a prior shape information. Then, the prior information is used as a shape constraint for fine segmentation of the level set, and the energy function of the level set is improved. Finally, the stripe normal field is obtained by calculating the stripe gradient vector, and the center of the stripe is extracted by fusing the gray center of gravity method according to the normal direction of the stripe distribution. The experimental results show that the average width error of different rows of point cloud data of workpieces with different widths is less than 0.3 mm, and the average repeatability extraction error is less than 0.2 mm.

16.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36290752

RESUMO

High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.

17.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36139731

RESUMO

Hypothermia-exposure-induced oxidative stress dysregulates cell fate and perturbs cellular homeostasis and function, thereby disturbing fish health. To evaluate the impact of hypothermia on the freshwater drum (Aplodinotus grunniens), an 8-day experiment was conducted at 25 °C (control group, Con), 18 °C (LT18), and 10 °C (LT10) for 0 h, 8 h, 1 d, 2 d, and 8 d. Antioxidant and non-specific immune parameters reveal hypothermia induced oxidative stress and immunosuppression. Liver ultrastructure alterations indicate hypothermia induced mitochondrial enlargement, nucleoli aggregation, and lipid droplet accumulation under hypothermia exposure. With the analysis of the transcriptome, differentially expressed genes (DEGs) induced by hypothermia were mainly involved in metabolism, immunity and inflammation, programmed cell death, and disease. Furthermore, the inflammatory response and apoptosis were evoked by hypothermia exposure in different immune organs. Interactively, apoptosis and inflammation in immune organs were correlated with antioxidation and immunity suppression induced by hypothermia exposure. In conclusion, these results suggest hypothermia-induced inflammation and apoptosis, which might be the adaptive mechanism of antioxidation and immunity in the freshwater drum. These findings contribute to helping us better understand how freshwater drum adjust to hypothermia stress.

18.
Antioxidants (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883706

RESUMO

Stocking density has been identified as one of the main factors affecting fish growth, welfare and behavior. However, few studies have focused on the effects of stocking density on fish health in integrated rice-fish farming systems. Thus, the aim of this study was to evaluate the effects of different stocking densities on the growth performance, physiological parameters, redox status and lipid metabolism of Micropterus salmoides in an integrated rice-fish farming system. The fish were reared at three densities: low density (LD, 40 g/m3), medium density (MD, 80 g/m3) and high density (HD, 120 g/m3) for 90 days. At the end of the experiment, fish reared in the MD and HD groups showed lower growth performance than those from the LD group. The HD treatment significantly altered the physiological parameters, including glucose and lactate. Meanwhile, the HD treatment induced oxidative stress and lipid peroxidation after 90 days of farming. Furthermore, transcriptomic analysis revealed that HD treatment led to abnormal lipid metabolism. Interestingly, we found the suppression of three key pathways related to lipid metabolism, including the PPAR, insulin and adipocytokine signaling pathways, in the HD group. Overall, our data indicated that the HD treatment inhibited growth and caused physiological responses, oxidative stress and abnormal hepatic lipid metabolism in M. salmoides in an integrated rice-fish farming system.

19.
Front Physiol ; 13: 793699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574457

RESUMO

Given the difficulty in identifying individuals with different degrees of ovarian development, we developed a new device utilizing the hypothesis of mutual attraction behavior between male and female crabs with mature gonads by releasing the sexual pheromone so they could be examined. From a total of 40 female crabs, 10 were isolated within half an hour. Histological analysis showed that the ovaries of crabs in the isolated group were in stage IV, while those of the control groups were in stage III. In addition, progesterone (PROG) in experimental groups was significantly reduced compared with the control group (p < 0.05), but no significant difference was detected in estradiol (E2). In response to the different developmental stages, hemolymph biochemical indices and the determination of gonadal fatty acids profiles were explored. The results indicated only C18:4 showed a significant difference between these two groups. A transcriptome was generated to determine the genes involved in the mutual attraction process; differentially expressed genes (DEGs) were significantly related to gonadal development. Therefore, the device can be used to isolate Chinese mitten crabs with stage IV ovarian development.

20.
Sci Total Environ ; 828: 154099, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240190

RESUMO

Anthropogenic activities discharge zinc into aquatic ecosystems, and the effects of long-term and low-concentration zinc exposure on fish behavior are unclear. We evaluated the behavior and physiology of male zebrafish (Danio rerio) after a 6-week exposure to 1.0 or 1.5 ppm (mg/L) zinc chloride. The exposure caused anxiety-like behaviors and altered the social preferences in both exposure groups. Analysis of transcriptional changes suggested that in the brain, zinc exerted heterogenetic effects on immune and neurotransmitter functions. Exposure to 1.0 ppm zinc chloride resulted in constitutive immune dyshomeostasis, while exposure to 1.5 ppm zinc chloride impaired the neurotransmitter glutamate. In the intestine, zinc dysregulated self-renewal of intestinal cells, a potential loss of defense function. Moreover, exposure to 1.5 ppm zinc chloride suppressed intestinal immune functions and dysregulated tyrosine metabolism. These behavioral alterations suggested that the underlying mechanisms were distinct and concentration-specific. Overall, environmental levels of zinc can alter male zebrafish behaviors by dysregulating neurotransmitter and immunomodulation signatures.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Comportamento Animal , Ecossistema , Homeostase , Masculino , Neurotransmissores/metabolismo , Fenótipo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/fisiologia , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA