RESUMO
Interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms in the innate immune system. The activated PKR performs its antiviral function by inhibiting protein translation and inducing apoptosis. In our previous study, we identified grass carp TARBP2 as an inhibitor of PKR activity, thereby suppressing cell apoptosis. This study aimed to explore the effects of grass carp TARBP2 on PKR activity and cell apoptosis. Grass carp TARBP2 comprises two N-terminal dsRBDs and a C-terminal C4 domain. Subcellular localization analysis conducted in CIK cells revealed that TARBP2-FL (full-length TARBP2), TARBP2-Δ1 (lack of the first dsRBD), and TARBP2-Δ2 (lack of the second dsRBD) are predominantly located in the cytoplasm, while TARBP2-Δ3 (lack of the two dsRBDs) is distributed both in the nucleus and cytoplasm. Colocalization and immunoprecipitation assays confirmed the interaction of TARBP2-FL, TARBP2-Δ1, and TARBP2-Δ2 with PKR, while TARBP2-Δ3 showed no binding. Furthermore, our findings suggested that the inhibitory effect of TARBP2-Δ1 or TARBP2-Δ2 on the PKR-eIF2α pathway is depressed compared to TARBP2-FL. In cell apoptosis assays, it was observed that TARBP2-FL inhibits PKR-mediated cell apoptosis. TARBP2-Δ1 or TARBP2-Δ2 exhibits decreased inhibition to PKR-mediated cell apoptosis, whereas TARBP2-Δ3 nearly completely loses this inhibitory effect. These findings highlight the critical importance of two dsRBDs of TARBP2 in interaction with PKR, as well as in the inhibition of PKR activity, resulting in the suppression of cell apoptosis triggered by prolonged PKR activation.
RESUMO
NIK (NF-κB inducing kinase) belongs to the mitogen-activated protein kinase family, which activates NF-κB and plays a vital role in immunology, inflammation, apoptosis, and a series of pathological responses. In NF-κB noncanonical pathway, NIK and IKKα have been often studied in mammals and zebrafish. However, few have explored the relationship between NIK and other subunits of the IKK complex. As a classic kinase in the NF-κB canonical pathway, IKKß has never been researched with NIK in fish. In this paper, the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) NIK (CiNIK) was first cloned and identified. The expression level of CiNIK in grass carp cells was increased under GCRV stimuli. Under the stimulation of GCRV, poly (I:C), and LPS, the expression of NIK in various tissues of grass carp was also increased. This suggests that CiNIK responds to viral stimuli. To study the relationship between CiNIK and CiIKKß, we co-transfected CiNIK-FLAG and CiIKKB-GFP into grass carp cells in coimmunoprecipitation and immunofluorescence experiments. The results revealed that CiNIK interacts with CiIKKß. Besides, the degree of autophosphorylation of CiNIK was enhanced under poly (I:C) stimulation. CiIKKß was phosphorylated by CiNIK and then activated the activity of p65. The activity change of p65 indicates that NF-κB downstream inflammatory genes will be functioning. CiNIK or CiIKKß up-regulated the expression of IL-8. It got higher when CiNIK and CiIKKß coexisted. This paper revealed that NF-κB canonical pathway and noncanonical pathway are not completely separated in generating benefits.
Assuntos
Sequência de Aminoácidos , Carpas , Proteínas de Peixes , Interleucina-8 , NF-kappa B , Proteínas Serina-Treonina Quinases , Regulação para Cima , Animais , Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-8/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Doenças dos Peixes/imunologia , Transdução de Sinais , Reoviridae/fisiologia , Filogenia , Quinase Induzida por NF-kappaB , Regulação da Expressão Gênica/imunologia , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Sequência de Bases , Perfilação da Expressão Gênica/veterináriaRESUMO
Liquid crystal monomers (LCMs) are a class of organic compounds with diphenyl or dicyclohexane as the skeleton structure, which are widely used in the manufacturing of liquid crystal displays. They are recognized as novel organic compounds with persistence, bioaccumulation, toxicity, and potential for long-range transport. LCMs are inevitably released into the environment throughout the life cycle of electronic products, and their presence has been found in various abiotic matrixes (air, dust, sediment, leachate, soil) and biotic matrixes (aquatic organisms, human serum, and human skin wipe). Given that studies on LCMs are still in their infancy, this review comprehensively summarizes the extensive literature data on LCMs and identifies key knowledge gaps and future research needs. The physicochemical properties, production, and usage of LCMs are described. Their environmental distribution, degradation, toxicity, and human exposure are also discussed based on the available data and results. Existing data show that LCMs have large-scale environmental pollution and may pose potential ecological and health risks, but it is still insufficient to accurately assess their risks due to the lack of knowledge on LCMs in many areas, such as global contamination trend, environmental behavior, toxic effects, and human exposure assessment. We believe that future studies of LCMs need to investigate LCMs pollution on a large geographic scale, explore their sources, behavior, and fate in the environment, and assess their potential health hazards to organisms and humans.
Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Cristais Líquidos , Humanos , Poluentes Ambientais/análise , Solo , Monitoramento AmbientalRESUMO
Environmental pollution and the fate of liquid crystal monomers (LCMs) in different matrices have received increasing attention owing to their potential persistence and toxicity. Sewage sludge, a representative environmental matrix, may be an important sink for LCMs. However, the contamination status of LCMs in sewage sludge remains unknown, especially on a large scale. In this study, a robust method was developed using GC-MS/MS analysis to determine 65 LCMs in sewage sludge. The occurrence of 65 LCMs in municipal sewage sludge in China was investigated for the first time. Among the 65 target LCMs, 48 were detectable, including 14 biphenyls/bicyclohexyls and their analogs (BAs) and 34 fluorobiphenyls and their analogs (FBAs). Six LCMs were detected at a rate >50 %. These results demonstrate the ubiquity of this class of synthetic chemicals in China. The total concentrations of LCMs in sludge ranged from 17.2 to 225 ng/g, with a median concentration of 46.4 ng/g. BAs were the major components of LCMs contamination in the sludge, with total BAs concentrations accounting for approximately 75 % of the total LCMs concentrations. A comparative analysis of sludge samples from different regions revealed significant regional distribution differences in LCMs: the concentrations of LCMs in sludge from East and Central China were significantly higher than those from West China (p < 0.05). Correlation and principal component analyses of the concentrations of LCMs revealed that LCMs in sludge share similar contamination sources and environmental behaviors. E-waste dismantling, domestic releases, and industrial releases may be sources of LCMs in sludge. Furthermore, the results of the degradation prediction implied that the plausible transformation products exhibited the same or even stronger persistence as the parent LCMs. Our study will be beneficial for LCMs regulation and offer suggestions for its development and safe application.
Assuntos
Cristais Líquidos , Poluentes Químicos da Água , Esgotos/química , Águas Residuárias , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Poluentes Químicos da Água/análise , ChinaRESUMO
Fluorescent brighteners (FBs) are a group of mass-produced dyestuff chemicals that have been extensively used for decades. However, knowledge of their occurrence in municipal wastewater treatment plants on a large geographical scale remains unknown. Herein, we implemented the first nationwide survey for wastewater-derived FBs in sludge across major cities in China. All 25 target FBs were detected in the nationwide sludge. Ionic FBs exhibited much higher concentrations than nonionic FBs. The total sludge concentrations of 25 FBs (∑25FBs) ranged from 7300 to 1,520,000 ng/g, with a median of 35,300 ng/g. A clear geographical distribution of significantly higher concentrations of FBs was found in East and Central China than in West China (p < 0.05). The sludge concentrations of ∑25FBs were correlated well with the gross domestic product (GDP) and population size at the provincial level in China (p < 0.05), demonstrating the significance of anthropogenic impacts on FB levels in urban sludge. The nationwide annual emission of total FBs into sludge in China is estimated to be 835 tons/year, of which 134 tons/year is directly released into sludge-applied soils. Our work highlights another new class of chemicals that significantly contribute to the chemical mixtures in urban sludge and thus require immediate attention.
Assuntos
Esgotos , Poluentes Químicos da Água , Esgotos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Águas Residuárias , ChinaRESUMO
In mammals, DYRK2 increases p53 phosphorylation level by interacting with it and then promotes cell apoptosis. However, the function of fish DYRK2 has not yet been elucidated. In this paper, we cloned and identified the coding sequence (CDS) of a grass carp DYRK2 (CiDYRK2) which is 1773 bp in length and encodes 590 amino acids. SMART predictive analysis showed that CiDYRK2 possesses a serine/threonine kinase domain. Subsequently, we used the dsRNA analog polyinosinic-polycytidylic acid (poly (I:C) and Grass carp reovirus (GCRV) to stimulate grass carp and CIK cells for different times and found that CiDYRK2 mRNA was significantly up-regulated both in fish tissues and cells. To explore the function of CiDYRK2, we carried out overexpression and knockdown experiments of CiDYRK2 in CIK cells. Real-time quantitative PCR (Q-PCR), TdT-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry were used to detect the ratio of BAX/BCL-2 mRNA, the number of TUNEL positive cells, the proportion of Annexin V-positive cells respectively. The results showed that CiDYRK2 significantly up-regulated BAX/Bcl-2 mRNA ratio and increased the number of TUNEL-positive cells, as well as the proportion of Annexin V-positive cells. On the contrary, knock-down of CiDYRK2 significantly down-regulated BAX/Bcl-2 mRNA ratio in the cells. Therefore, CiDYRK2 promoted cell apoptosis. To study the molecular mechanism by which CiDYRK2 promoting cell apoptosis, subcellular localization and immunoprecipitation experiments were used to study the relationship between grass carp DYRK2 and the pro-apoptotic protein p53. The results showed that CiDYRK2 and Cip53 were located and co-localized in the nucleus. Co-immunoprecipitation experiment also showed that CiDYRK2 and Cip53 can bind with each other. We further found that DYRK2 can increase the phosphorylation level of p53. In a word, our results showed that grass carp DYRK2 induces cell apoptosis by increasing the phosphorylation level of p53.
Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Anexina A5 , Apoptose , Carpas/genética , Carpas/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/química , Mamíferos/genética , Mamíferos/metabolismo , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , Reoviridae/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
As one of the Mex3 family members, Mex3A is crucial in cell proliferation, migration, and apoptosis in mammals. In this study, a novel gene homologous to mammalian Mex3A (named CiMex3A, MW368974) was cloned and identified in grass carp, which is 1,521 bp in length encoding a putative polypeptide of 506 amino acids. In CIK cells, CiMex3A is upregulated after stimulation with LPS, Z-DNA, and especially with intracellular poly(I:C). CiMex3A overexpression reduces the expressions of IFN1, ISG15, and pro-inflammatory factors IL8 and TNFα; likewise, Mex3A inhibits IRF3 phosphorylation upon treatment with poly(I:C). A screening test to identify potential targets suggested that CiMex3A interacts with RIG-I exclusively. Co-localization analysis showed that Mex3A and RIG-I are simultaneously located in the endoplasmic reticulum, while they rarely appear in the endosome, mitochondria, or lysosome after exposure to poly(I:C). However, RIG-I is mainly located in the early endosome and then transferred to the late endosome following stimulation with poly(I:C). Moreover, we investigated the molecular mechanism underlying CiMex3A-mediated suppression of RIG-I ubiquitination. The results demonstrated that Mex3A truncation mutant (deletion in the RING domain) can still interact physically with RIG-I, but fail to degrade it, suggesting that Mex3A also acts as a RING-type E3 ubiquitin ligase. Taken together, this study showed that grass carp Mex3A can interact with RIG-I in the endoplasmic reticulum following poly(I:C) stimulation, and then Mex3A facilitates the ubiquitination and degradation of RIG-I to inhibit IRF3-mediated innate antiviral immune response.
Assuntos
Carpas , Animais , Carpas/metabolismo , Imunidade Inata , Mamíferos/metabolismo , Poli I-C/metabolismo , Poli I-C/farmacologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Herein, we report an efficient proton exchange membrane formed from a synergistic combination of graphene oxide (GO) and oxidized single-walled carbon nanotube (CNTOX) by the freeze-drying route that gives rise to enhanced fuel cell power density. At 25 °C and 100% relative humidity (RH), the 3DGO-CNTOX hybrid shows remarkably high out-of-plane and in-plane proton conductivities of 6.64×10-2 and 5.08â S cm-1 , respectively. Additionally, the measured performance using prepared films as proton conduction membranes in a proton exchange membrane fuel cell (PEMFC) exhibited a peak power density of 117.21â mW cm-2 . The high performance of these films can be ascribed to the freeze-dried-driven structural morphology of 3DGO-CNTOX that facilitates higher water retention capacity as well as the synergistic strengthening effect between GO and CNTOX with a highly interconnected proton conduction network. The current results imply that the new 3DGO-CNTOX hybrid material has potential for wide application as a proton exchange membrane.
Assuntos
Grafite , Nanotubos de Carbono , Eletrólitos , Grafite/química , Nanotubos de Carbono/química , PrótonsRESUMO
PKR plays a significant role in IFN antiviral responses and in mediating apoptosis. Its activity is crucial for cellular antiviral and subsequent recovery. In mammalian cells, Protein Activator of the Interferon-induced Protein Kinase (PACT) and Trans-Activation-Responsive RNA-Binding Protein 2 (TARBP2) have the opposite effect on PKR activity in a dsRNA independent manner. There are some corresponding regulators of PKR in fish, too. In previous studies, we found that grass carp PACT can activate PKR in dsRNA independent manner. In this study, we tried to find out the effect of grass carp TARBP2 on PKR regulation. Grass carp TARBP2 expression is significantly increased at 6h post-poly I:C stimulation in CIK cells and grass carp tissues, indicating that it may play a role in poly I:C-mediated immune response. Then, we found that CiTARBP2 interacts with CiPKR and CiPACT, suggesting that it may regulate PKR activity by direct interaction with PKR or its regulators. Further, poly I:C promotes the phosphorylation of CiTARBP2 and enhances the interaction of CiTARBP2 and CiPKR. Finally, over-expression of CiTARBP2 decreases CiPKR phosphorylation and inhibits PKR-induced apoptosis. Therefore, our study reveals that CiTARBP2 can bind to CiPKR, CiPACT and CiTARBP2. The phosphorylated TARBP2 has stronger affinity to PKR, which results in the decrease of PKR phosphorylation and inhibition of cell apoptosis.
Assuntos
Carpas , Animais , Antivirais , Apoptose , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos/genética , Fosforilação , Poli I-C/metabolismo , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/genética , eIF-2 Quinase/genéticaRESUMO
The development of efficient proton conductors that are capable of high power density, sufficient mechanical strength, and reduced gas permeability is challenging. Herein, we report the development of a series of aromatic sulfonic acid/graphene oxide hybrid membranes incorporating benzene sulfonic acid (BS), naphthalene sulfonic acid (NS), naphthalene disulfonic acid (DS) or pyrene sulfonic acid (PS) using a facile freeze dried method. For out-of-plane proton conductivity, the 3DGO-BS and 3DGO-NS yielded proton conductivities of 4.4×10-2 â S cm-1 and 3.1×10-2 â S cm-1 , respectively; this represents a two-times higher value than that which occurs for three dimensional graphene oxide (3DGO). Additionally, the respective prepared films as membranes in a proton exchange membrane fuel cell (PEMFC) show maximum power density of 98.76â mW cm-2 for 3DGO-NS while it is 92.75â mW cm-2 for 3DGO-BS which are close to double that obtained for 3DGO (50â mW cm-2 ).
RESUMO
Liquid crystal monomers (LCMs) are a class of emerging chemical pollutants; however, their release and gas-particle partitioning remain unknown. This study performed the first comprehensive analysis of a wide range of 93 LCMs in the ambient air of liquid crystal display (LCD) dismantling facilities. A total of 53 of the 93 target LCMs were detected in the air samples. The total atmospheric concentrations (gas and particles) of LCMs (∑LCMs) ranged from 68,800 to 385,000 (median of 204,000) pg/m3. Most LCMs were predominant in the gas phase, implying that their atmospheric transport would be mainly governed by gas rather than particle diffusions. Differential distribution patterns of the LCMs were observed due to their different atmospheric partitioning behaviors. Significant linear correlations were found between the gas-particle partitioning coefficients (KP) and the predicted subcooled vapor pressures (PL) and octanol-air partitioning coefficients (Koa) (p < 0.01). Compared with two equilibrium-state models, the experimentally observed particulate fractions (Ï) fit better with the predicted values based on the Li-Ma-Yang (L-M-Y) steady-state model, and Koa was identified as a key factor determining the atmospheric fate pathways of LCMs. Our study highlights another new class of chemicals significantly contributing to the chemical mixture in the ambient air at e-waste recycling areas.
Assuntos
Poluentes Atmosféricos , Resíduo Eletrônico , Poluentes Ambientais , Cristais Líquidos , Poluentes Atmosféricos/análise , Poeira/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , ReciclagemRESUMO
Subcellular localization analysis implicated that CiPRMT6 was mainly located in the nucleus, with a small part of them located in the cytoplasm. PRMT6, namely protein arginine methyltransferase 6, was first identified and demonstrated to catalyze the methylation of arginine residue on the chromatin histones in mammals. Mammalian PRMT6 usually acts as an arginine methyltransferase in the nucleus, but induces antiviral innate immune response in the cytoplasm. Nowadays, there have been few reports about PRMT6 in teleost. In this study, we investigated the potential molecular mechanisms underlying the interaction of PRMT6 expression and IFN1 response in grass carp. We first cloned and identified a grass carp PRMT6 (named CiPRMT6, MN781672.1), which is 1068bp in length encoding a deduced polypeptide of 355 amino acids. In CIK cell, CiPRMT6 expression was up-regulated upon stimulation with poly (I:C); while overexpression of PRMT6 suppressed the promoter activity of grass carp IFN1 and reduced the phosphorylation of IRF3; however, the amount of PRMT6 mutant (lack of methyltransferase domain) was increased in the cytoplasm. Our results also showed that grass carp PRMT6 and IRF3 (but not TBK1) were co-located and bound to each other in the cytoplasm. The binding of CiPRMT6 to IRF3 impairs the interaction between TBK1 and IRF3, indicating that CiPRMT6 is a negative regulator for IFN1 expression through TBK1-IRF3 signaling pathway in grass carp. In conclusion, we identified that CiPRMT6 negatively regulated IFN1 expression by inhibiting the TBK1-IRF3 interaction as well as IRF3 phosphorylation.
Assuntos
Carpas/metabolismo , Animais , Proteínas de Peixes/genética , Imunidade Inata , Fator Regulador 3 de Interferon , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Poli I-C/imunologia , Proteínas Serina-Treonina Quinases , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Ativação Transcricional , Regulação para CimaRESUMO
Protein inhibitor of activated signal transducer and activator of transcription (PIAS) family protein involved in gene transcriptional regulation acts as negative regulator in Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway. But until now, the roles of PIAS in fish are not clear. In this study, we identified the two mammalian PIAS1 orthologs from Ctenopharyngodon idellus, namely CiPIAS1a and CiPIAS1b, respectively. They can respond to the stimulation from Polyribocytidylic acid (Poly I:C), Grass Carp Reovirus (GCRV) and Lipopolysaccharides (LPS) respectively, so we suggested that they could participate in interferon (IFN)-mediated antiviral and antibacterial immune response. The subcellular localization and nuclear cytoplasm extraction showed that CiPIAS1a and CiPIAS1b were mainly distributed in the nucleus. In addition, Co-IP showed that they separately inhibited the phosphorylation of STAT1 via interacting with it, which leads to the reduction of IFN1 expression.
Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Infecções por Reoviridae/imunologia , Reoviridae/fisiologia , Fator de Transcrição STAT1/metabolismo , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Imunidade Inata , Interferon Tipo I/metabolismo , Janus Quinases/metabolismo , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/genética , Transdução de SinaisRESUMO
Liquid-crystal monomers (LCMs), especially fluorinated biphenyls and analogues (FBAs), are considered to be a new generation of persistent, bioaccumulative, and toxic organic pollutants, but their emissions from liquid-crystal display (LCD)-associated e-waste dismantling remain unknown. To fill this knowledge gap, a broad range of 46 LCMs, including 39 FBAs and 7 biphenyls/bicyclohexyls and analogues (BAs), were investigated by a dedicated target analysis in e-waste dust samples. Of 39 target FBAs, 34 were detected in LCD dismantling-associated dust. Among these 34 detectable FBAs, 9 were detected in 100% of the samples and 25 were frequently detected in >50% of the samples. The total concentrations of these 34 FBAs (∑34FBAs) detected in LCD e-waste dust were in the range of 225-976,000 (median: 18,500) ng/g, significantly higher than those in non-LCD e-waste dust (range: 292-18,500, median: 2300 ng/g). In addition to FBAs, six of seven BAs were also frequently detected in LCD e-waste dust with total concentrations (∑6BAs) of 29.8-269,000 (median: 3470) ng/g. Very strong and significant correlations (P < 0.01) were identified in all frequently detected LCMs, indicating their common applications and similar sources. Our findings demonstrate that e-waste dismantling contributes elevated emissions of FBAs and BAs to the ambient environment.
Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Cristais Líquidos , Bifenilos Policlorados , China , Poeira/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Poluentes Orgânicos PersistentesRESUMO
As a dsRNA-dependent and interferon-induced protein kinase, PKR is involved in antiviral immune response and apoptosis mediated by various cytokines. In mammalian cells, PKR can also be activated in the absence of dsRNA. A PKR activator, PACT (PKR activating protein), also referred to as RAX (PKR-associated protein X) plays an important role. In recent years, with the increasing recognition of fish interferon system, PKR and PACT have been gradually revealed in fish. However, the function of fish PACT is unclear. In our previous work, we suggested that grass carp (Ctenopharyngodon idella) PACT must be involved in IRF2 and ATF4-mediated stress response pathways. In the present study, we found that the expression of C. idella PACT (CiPACT) and CiPKR were significantly up-regulated under the stimulation of LPS. It indicated that CiPACT and CiPKR may play an important role in response to LPS stimulation. In addition, the response time of CiPACT to LPS is earlier than that of CiPKR. It has also shown that overexpression of CiPACT in CIK cells can significantly enhance the level of p-eIF2α, induces apoptosis and translocation of Cip65 to nucleus from cytoplasm. To further understand the mechanism, we carried out the co-immunoprecipitation assay. It proved that the interaction of CiPACT and CiPKR made the phosphorylation of CiPKR. Overexpression of CiPACT induced the down-regulation of intracellular expression of bcl-2 and up-regulation of bax. However, in CiPKR knocked-down cells the expression of bcl-2 and bax were just the opposite. Therefore, the mechanism of fish PACT induces apoptosis and activates NF-кB is dependent on PKR.
Assuntos
Apoptose/imunologia , Carpas/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , NF-kappa B/genética , Proteínas de Ligação a RNA/genética , Animais , Carpas/imunologia , Proteínas de Peixes/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
Optofluidic microcavities with high Q factor have made rapid progress in recent years by using various micro-structures. On one hand, they are applied to microfluidic lasers with low excitation thresholds. On the other hand, they inspire the innovation of new biosensing devices with excellent performance. In this article, the recent advances in the microlaser research and the biochemical sensing field will be reviewed. The former will be categorized based on the structures of optical resonant cavities such as the Fabryâ»Pérot cavity and whispering gallery mode, and the latter will be classified based on the working principles into active sensors and passive sensors. Moreover, the difficulty of single-chip integration and recent endeavors will be briefly discussed.
RESUMO
We have realized in-situ growth of ultrathin ZnIn2S4 nanosheets on the sheet-like g-C3N4 surfaces to construct a "sheet-on-sheet" hierarchical heterostructure. The as-synthesized ZnIn2S4/g-C3N4 heterojunction nanosheets exhibit remarkably enhancement on the photocatalytic activity for H2 production. This enhanced photoactivity is mainly attributed to the efficient interfacial transfer of photoinduced electrons and holes from g-C3N4 to ZnIn2S4 nanosheets, resulting in the decreased charge recombination on g-C3N4 nanosheets and the increased amount of photoinduced charge carriers in ZnIn2S4 nanosheets. Meanwhile, the increased surface-active-sites and extended light absorption of g-C3N4 nanosheets after the decoration of ZnIn2S4 nanosheets may also play a certain role for the enhancement of photocatalytic activity. Further investigations by the surface photovoltage spectroscopy and transient photoluminescence spectroscopy demonstrate that ZnIn2S4/g-C3N4 heterojunction nanosheets considerable boost the charge transfer efficiency, therefore improve the probability of photoinduced charge carriers to reach the photocatalysts surfaces for highly efficient H2 production.
RESUMO
A Ln3+-doped (Yb3+, Tm3+ or Yb3+, Er3+ co-doped) NaYF4 nanoparticle/polystyrene hybrid fibrous membrane (HFM) was fabricated using an electrospinning technique. The HFM shows upconversion luminescence (UCL), flexibility, superhydrophobicity and processability. The UCL membrane can be used as a fluorescence sensor to detect bioinformation from a single water droplet (~10 µl). Based on the fluorescence resonance energy transfer, the detection limits of this sensor can reach 1 and 10 ppb for the biomolecule, avidin, and the dye molecule, Rhodamine B, respectively, which are superior to most of the fluorescence sensors reported in previous works. After the fluorescence detection, the target droplet was easily removed without residues on the UCL membrane surface due to its superhydrophobic property, which exhibits an excellent recyclability that cannot be achieved by traditional liquid-based detection systems.
RESUMO
Upconversion luminescence properties from the emissions of Stark sublevels of Er(3+) were investigated in Er(3+)-Yb(3+)-Mo(6+)-codoped TiO2 phosphors in this study. According to the energy levels split from Er(3+), green and red emissions from the transitions of four coupled energy levels, ²H11/2(I)/²H11/2(II), 4S3/2(I)/4S3/2(II), 4F9/2(I)/4F9/2(II), and ²H11/2(I) + ²H11/2(II)/4S3/2(I) + 4S3/2(II), were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR) technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er(3+)-Yb(3+)-Mo(6+)-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.
RESUMO
The present study aimed to investigate the correlation of the of hemoglobin A1c (HbA1c), C-peptide and insulin-like growth factor-1 (IGF-1) levels with the development and progression of lung cancer. The serum HbA1c, C-peptide and IGF-1 levels were measured and compared between 80 lung cancer patients and 80 healthy controls; furthermore, their correlation with histopathological type and tumor stage was analyzed in the 80 lung cancer patients. Our results suggested that the levels of HbA1c, C-peptide and IGF-1 were significantly increased in patients with lung cancer compared to those in the control group (P<0.05). In addition, the levels of C-peptide and IGF-1 were significantly higher in the small-cell lung cancer group (n=18), the stage III-IV (n=55) group and the lung cancer with diabetes mellitus group (n=43) compared to those in the non-small-cell lung cancer group (n=62), the stage I-II lung cancer group (n=25) and the lung cancer without diabetes group (n=37), respectively (P<0.05). Thus, the present study suggests that the increased serum HbA1c, C-peptide and IGF-1 levels are significantly correlated with the development and progression of lung cancer.