Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 461(7268): 1258-60, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19865166

RESUMO

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = 8.1(-0.3)(+0.1). This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.

2.
Nature ; 440(7081): 164, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16525462

RESUMO

Long gamma-ray bursts (GRBs) are bright flashes of high-energy photons that can last for tens of minutes; they are generally associated with galaxies that have a high rate of star formation and probably arise from the collapsing cores of massive stars, which produce highly relativistic jets (collapsar model). Here we describe gamma- and X-ray observations of the most distant GRB ever observed (GRB 050904): its redshift (z) of 6.29 means that this explosion happened 12.8 billion years ago, corresponding to a time when the Universe was just 890 million years old, close to the reionization era. This means that not only did stars form in this short period of time after the Big Bang, but also that enough time had elapsed for them to evolve and collapse into black holes.

3.
Nature ; 437(7060): 851-4, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16208363

RESUMO

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

4.
Nature ; 437(7060): 855-8, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16208364

RESUMO

Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

5.
Nature ; 435(7039): 178-80, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889084

RESUMO

The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

6.
Nature ; 435(7039): 181-4, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15889085

RESUMO

The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

7.
Nature ; 434(7037): 1107-9, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858567

RESUMO

Two classes of rotating neutron stars-soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars-are magnetars, whose X-ray emission is powered by a very strong magnetic field (B approximately 10(15) G). SGRs occasionally become 'active', producing many short X-ray bursts. Extremely rarely, an SGR emits a giant flare with a total energy about a thousand times higher than in a typical burst. Here we report that SGR 1806-20 emitted a giant flare on 27 December 2004. The total (isotropic) flare energy is 2 x 10(46) erg, which is about a hundred times higher than the other two previously observed giant flares. The energy release probably occurred during a catastrophic reconfiguration of the neutron star's magnetic field. If the event had occurred at a larger distance, but within 40 megaparsecs, it would have resembled a short, hard gamma-ray burst, suggesting that flares from extragalactic SGRs may form a subclass of such bursts.

8.
Ann N Y Acad Sci ; 688: 565-72, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26469463
9.
Appl Opt ; 28(20): 4344-52, 1989 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20555874

RESUMO

We introduce a new family of binary arrays for use in coded aperture imaging which are predicted to have properties and sensitivity (SNR) equal to that of the uniformly redundant array (URA). The new arrays, called MURAs (modified URAs), have decoding coefficients all of which are unimodular, resulting in a reconstructed image with noise terms completely independent of image-source structure. Although the new arrays are derived from quadratic residues, they do not belong to the cyclic difference set or set of pseudonoise sequences and consequently are constructible in configurations forbidden to those designs, thus providing the user with a wider selection of aperture patterns to match his particular needs. With the addition of MURAs to the family of binary arrays, all prime numbers can now be used for making optimal coded apertures, increasing the number of available square patterns by more than a factor of 3.

10.
Appl Opt ; 26(14): 2760-9, 1987 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20489958

RESUMO

Coded aperture imaging with uniformly redundant arrays (URAs) is the standard technique for imaging above the limit of grazing incident x-ray telescopes. It is an ideal technique for high energy astrophysics because it has high throughput, excellent performance on point sources, and the ability to measure simultaneously signal and background. However, many sources of interest in high energy astrophysics are time variable or require detailed energy spectra. Until now, to obtain a single time (or energy) sample, the photons from the particular time (or energy) interval must be formed into an encoded pattern, then processed to obtain an image for that sample. Therefore, massive computations are required to cover the entire time and energy parameter space. We present a new method of coded aperture analysis called URA tagging, which provides time and/or energy resolved histories of sources with known positions without using a correlation operation. It can easily reduce the computation time by orders of magnitude ompared to the next fastest method, the fast delta Hadamard transform. URA tagging can also correct for improperly encoded images or motion blurred images. Whereas previous methods for quantifying performance have not taken into account the finite resolution or the quantized sampling, URA tagging provides a SNR equation that includes all such effects. URA tagging analysis explains why delta decoding has a somewhat poorer SNR than balanced correlation; naively, one expects the better angular resolution to yield a better SNR. In addition, we show that complementary URAs (exchanged opaque and transparent elements) have different properties, and those with an even number of transparent elements should be preferred.

11.
Appl Opt ; 22(6): 826, 1983 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18195883
12.
Appl Opt ; 20(10): 1858-64, 1981 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20332847

RESUMO

Several new digital reconstruction techniques for coded aperture imaging are developed which are especially applicable to uniformly redundant arrays (URAs). The techniques provide improved resolution without upsetting the artifact-free nature of URAs. Two new techniques are described; one which allows self-supporting URAs and one which avoids (or at least mitigates) a blur which has been associated with previous correlation analyses. Each of the methods and their resolution improvements are demonstrated with reconstructions of a laser-driven compression. Particular emphasis has been placed on the special sampling required of the encoded picture and the decoding function if artifacts are to be avoided. For large URAs, it is shown that another new digital technique, periodic decoding, is much faster. Periodic decoding does produce artifacts, but they usually are negligible.

13.
Appl Opt ; 20(17): 3058-67, 1981 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20333095

RESUMO

In many fields (e.g., spectroscopy, imaging spectroscopy, photoacoustic imaging, coded aperture imaging) binary bit patterns known as m sequences are used to encode (by multiplexing) a series of measurements in order to obtain a larger throughput. The observed measurements must be decoded to obtain the desired spectrum (or image in the case of coded aperture imaging). Decoding in the past has used a technique called the fast Hadamard transform (FHT) whose chief advantage is that it can reduce the computational effort from N(2) multiplies to N log(2) N additions or subtractions. However, the FHT has the disadvantage that it does not readily allow one to sample more finely than the number of bits used in the m sequence. This can limit the obtainable resolution and cause confusion near the sample boundaries (phasing errors). We have developed both 1-D and 2-D methods (called fast delta Hadamard transforms, FDHT) which overcome both of the above limitations. Applications of the FDHT are discussed in the context of Hadamard spectroscopy and coded aperture imaging with uniformly redundant arrays. Special emphasis has been placed on how the FDHT can unite techniques used by both of these fields into the same mathematical basis.

14.
Appl Opt ; 19(14): 2465-71, 1980 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20234437

RESUMO

Coded aperture imaging uses many pinholes to increase the SNR for intrinsically weak sources when the radiation can be neither reflected nor refracted. Effectively, the signal is multiplexed onto an image and then decoded, often by computer, to form a reconstructed image. We derive the modulation transfer function (MTF) of such a system employing uniformly redundant arrays (URA). We show that the MTF of a URA system is virtually the same as the MTF of an individual pinhole regardless of the shape or size of the pinhole. Thus, only the location of the pinholes is important for optimum multiplexing and decoding. The shape and size of the pinholes can then be selected based on other criteria. For example, one can generate self-supporting patterns, useful for energies typically encountered in the imaging of laser-driven compressions or in soft x-ray astronomy. Such patterns contain holes that are all the same size, easing the etching or plating fabrication efforts for the apertures. A new reconstruction method is introduced called delta decoding. It improves the resolution capabilities of a coded aperture system by mitigating a blur often introduced during the reconstruction step.

16.
Appl Opt ; 18(7): 1052-7, 1979 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20208873

RESUMO

Recent work in coded aperture imaging has shown that the uniformly redundant array (URA) can image distant planar radioactive sources with no artifacts. This paper investigates the performance of two URA apertures when used in a close-up tomographic imaging system. It is shown that a URA based on m sequences is superior to one based on quadratic residues. The m-sequence array not only produces less noticeable defocus artifacts in tomographic imaging but is also more resilient to some described detrimental effects of close-up imaging. It is shown that, in spite of these close-up effects, the URA system retains tomographic depth resolution even as the source is moved close to the detector. The URAs based on m sequences provide better images than those obtained using random arrays. This compliments previous studies that have shown random arrays to have better tomographical properties than Fresnel zone plates and nonredundant arrays.

17.
Appl Opt ; 17(3): 337-47, 1978 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174412

RESUMO

Uniformly redundant arrays (URA) have autocorrelation functions with perfectly flat sidelobes. The URA combines the high-transmission characteristics of the random array with the flat sidelobe advantage of the nonredundant pinhole arrays. This gives the URA the capability to image low-intensity, low-contrast sources. Furthermore, whereas the inherent noise in random array imaging puts a limit on the obtainable SNR, the URA has no such limit. Computer simulations show that the URA with significant shot and background noise is vastly superior to random array techniques without noise. Implementation permits a detector which is smaller than its random array counterpart.

18.
Appl Opt ; 17(22): 3562-70, 1978 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20204031

RESUMO

Uniformly redundant arrays (URA) have autocorrelation functions with perfectly flat sidelobes. The URA combines the high-transmission characteristics of the random array with the flat sidelobe advantage of the nonredundant pinhole arrays. A general expression for the signal-to-noise ratio (SNR) has been developed for the URA as a function of the type of object being imaged and the design parameters of the aperture. The SNR expression is used to obtain an expression for the optimum aperture transmission. Currently, the only 2-D URAs known have a transmission of (1/2). This, however, is not a severe limitation because the use of the nonoptimum transmission of (1/2) never causes a reduction in the SNR of more than 30%. The predicted performance of the URA system is compared to the image obtainable from a single pinhole camera. Because the reconstructed image of the URA contains virtually uniform noise regardless of the original object's structure, the improvement over the single pinhole camera is much larger for the bright points than it is for the low intensity points. For a detector with high background noise, the URA will always give a much better image than the single pinhole camera regardless of the structure of the object. In the case of a detector with low background noise, the improvement of the URA relative to the single pinhole camera will have a lower limit of ~(2f)(-(1/2)), where f is the fraction of the field of view that is uniformly filled by the object.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA