Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
medRxiv ; 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34282425

RESUMO

Coagulopathy and thromboembolism are known complications of SARS-CoV-2 infection. The mechanisms of COVID-19-associated hematologic complications involve endothelial cell and platelet dysfunction and have been intensively studied. We leveraged a prospectively collected acute COVID-19 biorepository to study the association of plasma levels of a comprehensive list of coagulation proteins with the occurrence of venous thromboembolic events (VTE). We included in our analysis 305 subjects with confirmed SARS-CoV-2 infection who presented to an urban Emergency Department with acute respiratory distress during the first COVID-19 surge in 2020; 13 (4.2%) were subsequently diagnosed with venous thromboembolism during hospitalization. Serial samples were obtained and assays were performed on two highly-multiplexed proteomic platforms. Nine coagulation proteins were differentially expressed in patients with thromboembolic events. P-selectin, a cell adhesion molecule on the surface of activated endothelial cells, displayed the strongest association with the diagnosis of VTE, independent of disease severity (p=0.0025). This supports the importance of endothelial activation in the mechanistic pathway of venous thromboembolism in COVID-19. P-selectin together with D-dimer upon hospital presentation provided better discriminative ability for VTE diagnosis than D-dimer alone.

3.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33969320

RESUMO

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

4.
Curr Biol ; 31(3): 527-539.e7, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33259792

RESUMO

Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic strength are underlying learning and memory. Voltage-gated potassium (Kv) channels are potential regulators of memory and may be linked to age-dependent neuronal disfunction. MinK-related peptides (MiRPs) are conserved transmembrane proteins modulating Kv channels; however, their possible role in the regulation of memory and age-dependent memory decline are unknown. Here, we show that, in C. elegans, mps-2 is the sole member of the MiRP family that controls exclusively long-term associative memory (LTAM) in AVA neuron. In addition, we demonstrate that mps-2 also plays a critical role in age-dependent memory decline. In young adult worms, mps-2 is transcriptionally upregulated by CRH-1/cyclic AMP (cAMP)-response-binding protein (CREB) during LTAM, although the mps-2 baseline expression is CREB independent and instead, during aging, relies on nhr-66, which acts as an age-dependent repressor. Deletion of nhr-66 or its binding element in the mps-2 promoter prevents age-dependent transcriptional repression of mps-2 and memory decline. Finally, MPS-2 acts through the modulation of the Kv2.1/KVS-3 and Kv2.2/KVS-4 heteromeric potassium channels. Altogether, we describe a conserved MPS-2/KVS-3/KVS-4 pathway essential for LTAM and also for a programmed control of physiological age-dependent memory decline.


Assuntos
Transtornos da Memória , Memória de Longo Prazo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana
5.
PLoS Comput Biol ; 16(12): e1007974, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347479

RESUMO

Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.


Assuntos
Caenorhabditis elegans/fisiologia , Conectoma , Expressão Gênica , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
6.
bioRxiv ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33173871

RESUMO

COVID-19 has caused over 1 million deaths globally, yet the cellular mechanisms underlying severe disease remain poorly understood. By analyzing several thousand plasma proteins in 306 COVID-19 patients and 78 symptomatic controls over serial timepoints using two complementary approaches, we uncover COVID-19 host immune and non-immune proteins not previously linked to this disease. Integration of plasma proteomics with nine published scRNAseq datasets shows that SARS-CoV-2 infection upregulates monocyte/macrophage, plasmablast, and T cell effector proteins. By comparing patients who died to severely ill patients who survived, we identify dynamic immunomodulatory and tissue-associated proteins associated with survival, providing insights into which host responses are beneficial and which are detrimental to survival. We identify intracellular death signatures from specific tissues and cell types, and by associating these with angiotensin converting enzyme 2 (ACE2) expression, we map tissue damage associated with severe disease and propose which damage results from direct viral infection rather than from indirect effects of illness. We find that disease severity in lung tissue is driven by myeloid cell phenotypes and cell-cell interactions with lung epithelial cells and T cells. Based on these results, we propose a model of immune and epithelial cell interactions that drive cell-type specific and tissue-specific damage in severe COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA