Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768595

RESUMO

Biological rhythms are ubiquitous across organisms and coordinate key cellular processes. Oscillations of Mg2+ levels in cells are now well-established, and due to the critical roles of Mg2+ in cell metabolism, they are potentially fundamental for the circadian control of cellular activity. The identity of the transport proteins responsible for sustaining Mg2+ levels in eukaryotic cells remains hotly debated, and several are restricted to specific groups of higher eukaryotes. Here, using the eukaryotic minimal model cells of Ostreococcus tauri, we report two homologs of common descents of the Cyclin M (CNNM)/CorC protein family. Overexpression of these proteins leads to a reduction in the overall magnesium content of cells and a lengthening of the period of circadian gene expression rhythms. However, we observed a paradoxical increase in the magnesium content of the organelle fraction. The chemical inhibition of Mg2+ transport has a synergistic effect on circadian period lengthening upon the overexpression of one CNNM homolog, but not the other. Finally, both homologs rescue the deleterious effect of low extracellular magnesium on cell proliferation rates. Overall, we identified two CNNM proteins that directly affect Mg2+ homeostasis and cellular rhythms.


Assuntos
Relógios Circadianos , Ciclinas , Magnésio/metabolismo , Células Eucarióticas/metabolismo , Ritmo Circadiano , Homeostase
2.
Commun Biol ; 4(1): 1147, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593975

RESUMO

The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels.


Assuntos
Proteínas de Algas/genética , Clorófitas/fisiologia , Meio Ambiente , Periodicidade , Proteoma/genética , Proteínas de Algas/metabolismo , Clorófitas/genética , Proteoma/metabolismo , Análise Espaço-Temporal
3.
Genes (Basel) ; 10(2)2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791470

RESUMO

Circadian clocks in eukaryotes involve both transcriptional-translational feedback loops, post-translational regulation, and metabolic, non-transcriptional oscillations. We recently identified the involvement of circadian oscillations in the intracellular concentrations of magnesium ions (Mg2+i) that were conserved in three eukaryotic kingdoms. Mg2+i in turn contributes to transcriptional clock properties of period and amplitude, and can function as a zeitgeber to define phase. However, the mechanism-or mechanisms-responsible for the generation of Mg2+i oscillations, and whether these are functionally conserved across taxonomic groups, remain elusive. We employed the cellular clock model Ostreococcustauri to provide a first study of an MgtE domain-containing protein in the green lineage. OtMgtE shares homology with the mammalian SLC41A1 magnesium/sodium antiporter, which has previously been implicated in maintaining clock period. Using genetic overexpression, we found that OtMgtE contributes to both timekeeping and daily changes in Mg2+i. However, pharmacological experiments and protein sequence analyses indicated that critical differences exist between OtMgtE and either the ancestral MgtE channel or the mammalian SLC41 antiporters. We concluded that even though MgtE domain-containing proteins are only distantly related, these proteins retain a shared role in contributing to cellular timekeeping and the regulation of Mg2+i.


Assuntos
Antiporters/genética , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Clorófitas/genética , Ritmo Circadiano , Magnésio/metabolismo , Proteínas de Plantas/genética , Clorófitas/fisiologia , Proteínas de Plantas/metabolismo
4.
Sci Total Environ ; 647: 75-87, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077857

RESUMO

The diversity and biological characteristics of eukaryotic communities within acid mine drainage (AMD) sites is less well studied than for prokaryotic communities. Furthermore, for many eukaryotic extremophiles the potential mechanisms of adaptation are unclear. This study describes an evaluation of eight highly acidic (pH 1.6-3.1) and one moderately acidic (pH 5.6) metal-rich acid mine drainage ponds at a disused copper mine. The severity of AMD pollution on eukaryote biodiversity was examined, and while the most species-rich site was less acidic, biodiversity did not only correlate with pH but also with the concentration of dissolved and particulate metals. Acid-tolerant microalgae were present in all ponds, including the species Chlamydomonas acidophila, abundance of which was high in one very metal-rich and highly acidic (pH 1.6) pond, which had a particularly high PO4-P concentration. The C. acidophila strain named PM01 had a broad-range pH tolerance and tolerance to high concentrations of Cd, Cu and Zn, with bioaccumulation of these metals within the cell. Comparison of metal tolerance between the isolated strain and other C. acidophila strains previously isolated from different acidic environments found that the new strain exhibited much higher Cu tolerance, suggesting adaptation by C. acidophila PM01 to excess Cu. An analysis of the metabolic profile of the strains in response to increasing concentrations of Cu suggests that this tolerance by PM01 is in part due to metabolic adaptation and changes in protein content and secondary structure.


Assuntos
Chlamydomonas/fisiologia , Mineração , Poluentes Químicos da Água/toxicidade , Adaptação Fisiológica/fisiologia , Chlamydomonas/classificação , Monitoramento Ambiental , Eucariotos/classificação , Eucariotos/fisiologia , Metais Pesados , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA