Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835076

RESUMO

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Lipopolissacarídeos , Receptor trkB , Animais , Humanos , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Lipopolissacarídeos/farmacologia , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Linhagem Celular Tumoral , Monoterpenos Ciclopentânicos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Azeite de Oliva/farmacologia , Azeite de Oliva/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Aldeídos , Glicoproteínas de Membrana , Fenóis
2.
ACS Omega ; 9(20): 22325-22335, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799349

RESUMO

Antibiotics are frequently used to treat, prevent, or control bacterial infections, but in recent years, infections resistant to all known classes of conventional antibiotics have significantly grown. The development of novel, nontoxic, and nonincursive antimicrobial methods that work more quickly and efficiently than the present antibiotics is required to combat this growing public health issue. Here, Co(II) and Zn(II) derivatives of tetrakis(1-methylpyridinium-4yl)porphyrin [H2TMPyP]4+ as a tetra(ρ-toluenesulfonate) were synthesized and purified to investigate their interactions with DNA (pH 7.40, 25 °C) using UV-vis, fluorescence techniques, and antimicrobial activity. UV-vis results showed that [H2TMPyP]4+ had a high hypochromicity (∼64%) and a substantial bathochromic shift (Δλ, 14 nm), while [Co(II)TMPyP]4+ and [Zn(II)TMPyP]4+ showed little hypochromicity (∼37%) and a small bathochromic shift (Δλ, 3-6 nm). Results reveal that [H2TMPyP]4+ interacts with DNA via intercalation, while Co(II)- and [Zn(II)TMPyP]4+ interact with DNA via outside self-stacking. Fluorescence results also confirmed the interaction of [H2TMPyP]4+ and the metalloporphyrins with DNA. Results of the antimicrobial activity assay revealed that the metalloporphyrins showed inhibitory effects on Gram-positive and Gram-negative bacteria and fungi, but that neither the counterions nor [H2TMPyP]4+ exhibited any inhibitory effects. Mechanism of antimicrobial activities of metalloporphyrins are discussed.

3.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474603

RESUMO

Glutathione (GSH) has long been recognised for its antioxidant and detoxifying effects on the liver. The hepatoprotective effect of GSH involves the activation of antioxidative systems such as NRF2; however, details of the mechanisms remain limited. A comparative analysis of the biological events regulated by GSH under physiological and oxidative stress conditions has also not been reported. In this study, DNA microarray analysis was performed with four experiment arms including Control, GSH, hydrogen peroxide (HP), and GSH + HP treatment groups. The GSH-treated group exhibited a significant upregulation of genes clustered in cell proliferation, growth, and differentiation, particularly those related to MAPK, when compared with the Control group. Additionally, liver functions such as alcohol and cholesterol metabolic processes were significantly upregulated. On the other hand, in the HP-induced oxidative stress condition, GSH (GSH + HP group) demonstrated a significant activation of cell proliferation, cell cycle, and various signalling pathways (including TGFß, MAPK, PI3K/AKT, and HIF-1) in comparison to the HP group. Furthermore, several disease-related pathways, such as chemical carcinogenesis-reactive oxygen species and fibrosis, were significantly downregulated in the GSH + HP group compared to the HP group. Collectively, our study provides a comprehensive analysis of the effects of GSH under both physiological and oxidative stress conditions. Our study provides essential insights to direct the utilisation of GSH as a supplement in the management of conditions associated with oxidative stress.


Assuntos
Antioxidantes , Fosfatidilinositol 3-Quinases , Humanos , Antioxidantes/farmacologia , Células Hep G2 , Fosfatidilinositol 3-Quinases/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
4.
Heliyon ; 10(5): e26867, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463791

RESUMO

Squalene (SQ) is a natural compound with anti-inflammatory, anti-cancer, and anti-oxidant effects, but due to its low solubility, its biological properties have been greatly underestimated. This study aims to explore the differences in gene expression patterns of four newly synthesized amphipathic ethylene glycol (EG) derivatives of SQ by whole-genome transcriptomics analysis using DNA microarray to examine the mRNA expression profile of adipocytes differentiated from 3T3-L1 cells treated with SQ and its EG derivatives. Enrichment analyses of the transcriptional data showed that compared with SQ, its EG derivatives exerted different, in most cases desirable, biological responses. EG derivatives showed increased enrichment of mitochondrial functions, lipid and glucose metabolism, and inflammatory response. Mono-, di-, and tetra-SQ showed higher enrichment of the cellular component-ribosome. Histological staining showed EG derivatives prevented excessive lipid accumulation. Additionally, mitochondrial transcription factors showed upregulation in tetra-SQ-treated cells. Notably, EG derivatives showed better anti-inflammatory effects. Further, gene-disease association analysis predicted substantial improvement in the bioactivities of SQ derivatives in metabolic diseases. Cluster analyses revealed di- and tetra-SQ had more functional similarities than others, reflected in their scanning electron microscopy images; both di- and tetra-SQ self-organized into similar sizes and shapes of vesicles, subsequently improving their cation binding activities. Protein-protein interaction networks further revealed that cation binding activity might explain a major part, if not all, of the differences observed in functional analyses. Altogether, the addition of EG derivatives may improve the biological responses of SQ and thus may enhance its health-promoting potential.

5.
Nutrients ; 16(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276555

RESUMO

This study aimed to assess the efficacy of Nitraria retusa extract (NRE) in reducing weight, body mass index (BMI), body fat composition (BF), and anthropometric parameters among overweight/obese women, comparing the results with those of a placebo group. Overweight/obese individuals participated in a 12-week, double-blind, randomized, placebo-controlled trial. Body weight, BMI, body composition, and anthropometric parameters were assessed. Additionally, lipid profile and safety evaluation parameters were evaluated. Compared to the placebo group, the NRE group exhibited a mean weight loss difference of 2.27 kg (p < 0.001) at the trial's conclusion. Interestingly, the most significant weight reduction, amounting to 3.34 kg ± 0.93, was observed in younger participants with a BMI > 30.0. Similarly, BMI and BF% significantly decreased in the NRE group, contrary to the placebo group (p = 0.008 and p = 0.005, respectively). The percentage of body water (BW) (p = 0.006) as well as the ratio of LBM/BF (p = 0.039) showed a significant increase after the NRE intervention compared to the placebo. After age adjustment, all variables, except LBM/BF, retained statistical significance. Additionally, all anthropometric parameters were significantly reduced only in the NRE group. Most importantly, a significant reduction in Triglyceride (TG) levels in the NRE group was revealed, in contrast to the placebo group (p = 0.011), and the significance was still observed after age adjustment (p = 0.016). No side effects or adverse changes in kidney and liver function tests were observed in both groups. In conclusion, NRE demonstrated potent antiobesity effects, suggesting that NRE supplementation may represent an effective alternative for treating obesity compared to antiobesity synthetic drugs.


Assuntos
Fármacos Antiobesidade , Magnoliopsida , Obesidade , Extratos Vegetais , Feminino , Humanos , Fármacos Antiobesidade/uso terapêutico , Composição Corporal , Índice de Massa Corporal , Método Duplo-Cego , Obesidade/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Projetos Piloto , Extratos Vegetais/uso terapêutico , Fitoterapia
6.
Nat Prod Bioprospect ; 14(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177614

RESUMO

Age-related mitochondrial dysfunction leads to defects in cellular energy metabolism and oxidative stress defense systems, which can contribute to tissue damage and disease development. Among the key regulators responsible for mitochondrial quality control, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is an important target for mitochondrial dysfunction. We have previously reported that bioactive polyphenols extracted from sugarcane top (ST) ethanol extract (STEE) could activate neuronal energy metabolism and increase astrocyte PGC-1α transcript levels. However, their potential impact on the mitochondria activity in muscle and liver cells has not yet been investigated. To address this gap, our current study examined the effects of STEE and its polyphenols on cultured myotubes and hepatocytes in vitro. Rhodamine 123 assay revealed that the treatment with STEE and its polyphenols resulted in an increase in mitochondrial membrane potential in C2C12 myotubes. Furthermore, a comprehensive examination of gene expression patterns through transcriptome-wide microarray analysis indicated that STEE altered gene expressions related to mitochondrial functions, fatty acid metabolism, inflammatory cytokines, mitogen-activated protein kinase (MAPK) signaling, and cAMP signaling in both C2C12 myotubes and HepG2 hepatocytes. Additionally, protein-protein interaction analysis identified the PGC-1α interactive-transcription factors-targeted regulatory network of the genes regulated by STEE, and the quantitative polymerase chain reaction results confirmed that STEE and its polyphenols upregulated the transcript levels of PGC-1α in both C2C12 and HepG2 cells. These findings collectively suggest the potential beneficial effects of STEE on muscle and liver tissues and offer novel insights into the potential nutraceutical applications of this material.

7.
Geroscience ; 46(2): 1671-1691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37721682

RESUMO

In recent years, exploring natural compounds with functional properties to ameliorate aging-associated cognitive decline has become a research priority to ensure healthy aging. In the present study, we investigated the effects of Trigonelline (TG), a plant alkaloid, on memory and spatial learning in 16-week-old senescence-accelerated mouse model SAMP8 using an integrated approach for cognitive and molecular biology aspects. After 30 days of oral administration of TG at the dose of 5 mg/kg/day, the mice were trained in Morris Water Maze task. TG-treated SAMP8 mice exhibited significant improvement in the parameters of escape latency, distance moved, and annulus crossing index. Next, we performed a whole-genome transcriptome profiling of the mouse hippocampus using microarrays. Gene ontology analyses showed that a wide range of biological processes, including nervous system development, mitochondrial function, ATP synthesis, and several signaling pathways related to inflammation, autophagy, and neurotransmitter release, were significantly enriched in TG-treated SAMP8 compared to nontreated. Further, a nonlinear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP), was applied to identify clusters of functions that revealed TG primarily regulated pathways related to inflammation, followed by those involved in neurotransmitter release. In addition, a protein-protein interaction network analysis indicated that TG may exert its biological effects through negatively modulating Traf6-mediated NF-κB activation. Finally, ELISA test showed that TG treatment significantly decreased proinflammatory cytokines- TNFα and IL6 and increased neurotransmitters- dopamine, noradrenaline, and serotonin in mouse hippocampus. Altogether, our integrated bio-cognitive approach highlights the potential of TG in alleviating age-related memory and spatial impairment.


Assuntos
Alcaloides , Citocinas , Camundongos , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Neurotransmissores/uso terapêutico , Inflamação
8.
Eur J Pharmacol ; 960: 176143, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37866748

RESUMO

Caffeoylquinic acids (CQA) are polyphenolic compounds found in fruits, vegetables, coffee, and spices that have exhibited several beneficial activities, including antioxidant, antibacterial, neuroprotective, anti-inflammatory, anticancer, antiviral, antidiabetic, and cardiovascular effects. A derivative, TCQA (3,4,5-Tri-O-caffeoylquinic acid), has also shown both neurogenic and pigment differentiation potential. A transcriptomic-based meta-analysis was conducted to explore potential biochemical processes and molecular targets of TCQA. This approach involved integrating data from various cell and tissue types, including human amniotic stem cells, human neural stem cells, human dermal papilla cells, and the brain cortex of aging model mice. It offered a comprehensive perspective on the significant gene regulations in response to TCQA treatment. The objective was to uncover the mechanism and novel targets of TCQA, facilitating a further understanding of its functions. New areas of interest found were TCQA's effect on adipogenesis, heart, and muscle tissue development. In addition, significantly enhanced biological activities found through meta-analysis included cell cycle, VEGFA-VEGFR2 pathway, and BMP signaling. Overall, a comprehensive functional and visual analysis using available biological databases uncovered the multi-target potential of this natural compound.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Neurais , Humanos , Camundongos , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Neurogênese
9.
Nutrients ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836379

RESUMO

Natural resources have recently received considerable attention as complementary or alternative hematinic agents. In this regard, olive leaf extract, which is rich in bioactive phenolic compounds, has been reported to induce erythroid differentiation in human hematopoietic stem cells. Therefore, in the present study, we aimed to explore the potential hematinic properties of aqueous olive leaf extract (WOL) in vivo. After 24 days of administering WOL to healthy mice orally, red blood cell (RBC), hematocrit, reticulocyte, and reticulocyte hemoglobin content (CHr) showed a significant increase. Additionally, WOL promoted plasma iron levels and the expression of splenic ferroportin (Fpn), an iron transporter. Additionally, a single-arm pilot study involving a limited number of healthy volunteers was conducted to assess WOL's feasibility, compliance, and potential benefits. Following an 8-week intervention with WOL, RBC count and hemoglobin level were significantly increased. Notably, there were no significant changes in the safety measures related to liver and kidney functions. Furthermore, we identified oleuropein and oleuroside as the active components in WOL to induce erythroid differentiation in the K562 cell line. Altogether, our study presents evidence of the hematinic potential of WOL in the in vivo studies, opening up exciting possibilities for future applications in preventing or treating anemia.


Assuntos
Hematínicos , Olea , Humanos , Camundongos , Animais , Voluntários Saudáveis , Projetos Piloto , Ferro , Hemoglobinas
10.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762170

RESUMO

With the progression of an aging society, cognitive aging has emerged as a pressing concern necessitating attention. The senescence-accelerated mouse-prone 8 (SAMP8) model has proven instrumental in investigating the early stages of cognitive aging. Through an extensive examination of molecular changes in the brain cortex, utilizing integrated whole-genome transcriptomics, our principal aim was to uncover potential molecular targets with therapeutic applications and relevance to drug screening. Our investigation encompassed four distinct conditions, comparing the same strain at different time points (1 year vs. 16 weeks) and the same time point across different strains (SAMP8 vs. SAMR1), namely: physiological aging, accelerated aging, early events in accelerated aging, and late events in accelerated aging. Focusing on key functional alterations associated with aging in the brain, including neurogenesis, synapse dynamics, neurometabolism, and neuroinflammation, we identified candidate genes linked to these processes. Furthermore, employing protein-protein interaction (PPI) analysis, we identified pivotal hub genes involved in interactions within these functional domains. Additionally, gene-set perturbation analysis allowed us to uncover potential upstream genes or transcription factors that exhibited activation or inhibition across the four conditions. In summary, our comprehensive analysis of the SAMP8 mouse brain through whole-genome transcriptomics not only deepens our understanding of age-related changes but also lays the groundwork for a predictive model to facilitate drug screening for cognitive aging.


Assuntos
Envelhecimento Cognitivo , Transcriptoma , Animais , Camundongos , Encéfalo , Envelhecimento/genética , Córtex Cerebral , Modelos Animais de Doenças
11.
Nutrients ; 15(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37630839

RESUMO

In the present study, we aimed to explore the feasibility, compliance, and potential benefits of Nitraria retusa extract (NRE) intervention in both healthy (BMI ≤ 24.9 Kg/m2) and overweight/obese adults (BMI > 25 Kg/m2). A total of 98 participants, including 37 healthy individuals and 61 overweight/obese adults, were randomly assigned to either a low-dose (500 mg/day) or a high-dose (2000 mg/day) NRE intervention group. Plasma lipid biomarkers, liver and kidney functions, general hematology, and blood glucose levels were measured at the baseline and 10 days after intervention. While the lipid profile of the healthy participants did not show any statistically significant changes, the obese participants in the high-dose group experienced a significant decrease in triglyceride levels (within-group difference p value = 0.004) and an increase in HDL levels (within-group p value < 0.001). No significant differences were observed in other parameters, indicating that NRE at the given doses was safe. Furthermore, the study had impressive compliance and acceptability, with over 90% of participants completing the intervention and diligently following the study protocol. This pilot study represents the first investigation into the feasibility, acceptability, and potential benefits of NRE intervention on lipid profiles in human volunteers.


Assuntos
Magnoliopsida , Sobrepeso , Adulto , Humanos , Projetos Piloto , Obesidade , Lipídeos , Chá
12.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445596

RESUMO

Oleacein (OLE), a rare natural compound found in unfiltered extra virgin olive oil, has been shown to have anti-inflammatory and anti-obesity properties. However, little is known regarding the mechanisms by which OLE influences metabolic processes linked to disease targets, particularly in the context of lipid metabolism. In the present study, we conducted whole-genome DNA microarray analyses in adipocytes differentiated from human adipose-derived stem cells (hASCs) and diabetic hASCs (d-hASCs) to examine the effects of OLE on modulating metabolic pathways. We found that OLE significantly inhibited lipid formation in adipocytes differentiated from both sources. In addition, microarray analysis demonstrated that OLE treatment could significantly downregulate lipid-metabolism-related genes and modulate glucose metabolism in both adipocyte groups. Transcription factor enrichment and protein-protein interaction (PPI) analyses identified potential regulatory gene targets. We also found that OLE treatment enhanced the anti-inflammatory properties in adipocytes. Our study findings suggest that OLE exhibits potential benefits in improving lipid and glucose metabolism, thus holding promise for its application in the management of metabolic disorders.


Assuntos
Diabetes Mellitus , Olea , Humanos , Transcriptoma , Adipócitos/metabolismo , Metabolismo dos Lipídeos , Azeite de Oliva/farmacologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Células-Tronco , Glucose/metabolismo
13.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175790

RESUMO

Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA.


Assuntos
Antioxidantes , Diterpenos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Transcriptoma , Abietanos/farmacologia , Abietanos/química , Diterpenos/farmacologia
14.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047640

RESUMO

The present study aimed to evaluate the effects of Botryococcus terribilis ethanol extract (BTEE) on lipopolysaccharide (LPS)-induced inflammation in RAW264 cells. BTEE significantly attenuated LPS-induced nitric oxide production and inflammatory cytokines release, including Ccl2, Cox2, and Il6. On the other hand, several anti-inflammatory mediators, such as Pgc1ß and Socs1, were increased in BTEE-treated cells. Further, we performed an untargeted whole-genome microarray analysis to explore the anti-inflammatory molecular mechanism of BTEE. Enrichment analysis showed BTEE significantly downregulated 'response to stimulus', 'locomotion', and 'immune system response' and upregulated 'cell cycle' gene ontologies in both 6- and 17-h post-LPS stimulation conditions. Pathway analysis revealed BTEE could downregulate the expressions of chemokines of the CC and CXC subfamily, and cytokines of the TNF family, TGFß family, IL1-like, and class I helical. PPI analysis showed AXL receptor tyrosine kinase (Axl), a receptor tyrosine kinase from the TAM family, and its upstream transcription factors were downregulated in both conditions. Node neighborhood analysis showed several Axl coexpressed genes were also downregulated. Further, kinase enrichment and chemical perturbation analyses supported Axl inhibition in BTEE-treated conditions. Altogether, these findings suggest anti-inflammatory effects of BTEE that are mediated via the suppression of pro-inflammatory cytokines and predict its potential as an Axl inhibitor.


Assuntos
Etanol , Macrófagos , Animais , Camundongos , Etanol/farmacologia , Macrófagos/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Células RAW 264.7 , Citocinas/metabolismo , Óxido Nítrico/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
15.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499441

RESUMO

Sugarcane (Saccharum officinarum L.) is a tropical plant grown for sugar production. We recently showed that sugarcane top (ST) ameliorates cognitive decline in a mouse model of accelerated aging via promoting neuronal differentiation and neuronal energy metabolism and extending the length of the astrocytic process in vitro. Since the crude extract consists of multicomponent mixtures, it is crucial to identify bioactive compounds of interest and the affected molecular targets. In the present study, we investigated the bioactivities of major polyphenols of ST, namely 3-O-caffeoylquinic acid (3CQA), 5-O-caffeoylquinic acid (5CQA), 3-O-feruloylquinic acid (3FQA), and Isoorientin (ISO), in human fetal neural stem cells (hNSCs)- an in vitro model system for studying neural development. We found that multiple polyphenols of ST contributed synergistically to stimulate neuronal differentiation of hNSCs and induce mitochondrial activity in immature astrocytes. Mono-CQAs (3CQA and 5CQA) regulated the expression of cyclins related to G1 cell cycle arrest, whereas ISO regulated basic helix-loop-helix transcription factors related to cell fate determination. Additionally, mono-CQAs activated p38 and ISO inactivated GSK3ß. In hNSC-derived immature astrocytes, the compounds upregulated mRNA expression of PGC-1α, a master regulator of astrocytic mitochondrial biogenesis. Altogether, our findings suggest that synergistic interactions between major polyphenols of ST contribute to its potential for neuronal differentiation and astrocytic maturation.


Assuntos
Células-Tronco Neurais , Saccharum , Camundongos , Animais , Humanos , Saccharum/genética , Polifenóis/farmacologia , Polifenóis/metabolismo , Diferenciação Celular , Neurogênese
16.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805177

RESUMO

Dermal papilla cells (DPCs) are an important element of the hair follicle (HF) niche, widely used as an in vitro model to study hair growth-related research. These cells are usually grown in 2D culture, but this system did not show efficient therapeutic effects on HF regeneration and growth, and key differences were observed between cell activity in vitro and in vivo. Recent studies have showed that DPCs grown in 3D hanging spheroids are more morphologically akin to an intact DP microenvironment. In this current study, global gene molecular analysis showed that the 3D model highly affected cell adhesion molecules and hair growth-related pathways. Furthermore, we compared the expression of signalling molecules and metabolism-associated proteins of DPCs treated with minoxidil (an FDA-approved drug for hair loss treatment) and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (recently found to induce hair growth in vitro and in vivo) in 3D spheroid hanging drops and a 2D monolayer using DNA microarray analysis. Further validations by determining the gene and protein expressions of key signature molecules showed the suitability of this 3D system for enhancing the DPC activity of the hair growth-promoting agents minoxidil and TCQA.


Assuntos
Folículo Piloso , Minoxidil , Cabelo , Humanos , Minoxidil/metabolismo , Minoxidil/farmacologia , Proteômica , Ácido Quínico/análogos & derivados
18.
Front Cell Dev Biol ; 10: 865810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433672

RESUMO

Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.

19.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054888

RESUMO

Diabetes mellitus, especially type 2 (T2DM), is a major public health problem globally. DM is characterized by high levels of glycemia and insulinemia due to impaired insulin secretion and insulin sensitivity of the cells, known as insulin resistance. T2DM causes multiple and severe complications such as nephropathy, neuropathy, and retinopathy causing cell oxidative damages in different internal tissues, particularly the pancreas, heart, adipose tissue, liver, and kidneys. Plant extracts and their bioactive phytochemicals are gaining interest as new therapeutic and preventive alternatives for T2DM and its associated complications. In this regard, isorhamnetin, a plant flavonoid, has long been studied for its potential anti-diabetic effects. This review describes its impact on reducing diabetes-related disorders by decreasing glucose levels, ameliorating the oxidative status, alleviating inflammation, and modulating lipid metabolism and adipocyte differentiation by regulating involved signaling pathways reported in the in vitro and in vivo studies. Additionally, we include a post hoc whole-genome transcriptome analysis of biological activities of isorhamnetin using a stem cell-based tool.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Quercetina/análogos & derivados , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Perfilação da Expressão Gênica , Humanos , Inflamação , Metabolismo dos Lipídeos , Estresse Oxidativo , Quercetina/farmacologia , Quercetina/uso terapêutico
20.
J Pharmacol Sci ; 148(2): 229-237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063138

RESUMO

Post-stroke antiplatelet therapy has been proved to reduce the risk of recurrent stroke; however, it may also increase the incidence of intracranial hemorrhage that could offset any benefits. Therefore, the balance between the benefits and risks of antiplatelet drugs is a critical issue to consider. In the present study, we have compared the effects of post-stroke administration of antiplatelet agents on functional outcomes in the stroke-prone spontaneously hypertensive rat (SHRSP), an established animal model that mimics human lacunar stroke and cerebral small vessel disease. We confirmed that a potent phosphodiesterase 3 (PDE3) inhibitor, K-134, significantly improved post-stroke survival rate and survival time, attenuated stroke-induced neurological deficits, and decreased the incidence of cerebral lesion caused by intracerebral hemorrhage and softening. Similarly, cilostazol showed beneficial effects, though to a lower extent with respect to the survival outcome and neurological symptoms. On the other hand, a P2Y12 inhibitor, clopidogrel significantly improved survival outcomes at the higher dose but caused massive bleeding in the brain at both low and high doses. In contrast, no hemorrhagic lesion was observed in K-134-treated SHRSPs despite its antiplatelet activity. Our findings indicate that K-134 may have a superior post-stroke therapeutic outcome in comparison to other antiplatelet drugs.


Assuntos
Inibidores da Fosfodiesterase 3/uso terapêutico , Quinolinas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Ureia/análogos & derivados , Animais , Hemorragia Cerebral/etiologia , Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Ratos Endogâmicos SHR , Medição de Risco , Acidente Vascular Cerebral/mortalidade , Taxa de Sobrevida , Resultado do Tratamento , Ureia/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA