RESUMO
LEGEND-200 (Large Enriched Germanium Experiment for Neutrinoless ßß Decay) is a physics experiment at the Gran Sasso National Laboratories (LNGS) in Italy searching for neutrinoless double beta (0υßß) decay of 76Ge using enriched high purity germanium (HPGe) detectors with a total mass of about 200 kg. During the production of germanium crystals, especially during the crystal cutting, a fraction of the enriched germanium remains as metal residues. To reuse these residual materials again for crystal growing, they must be efficiently purified. A special plant was built to purify and convert Ge metal to GeO2. Quadrupole ICP-MS (Q-ICP-MS) and High Resolution ICP-MS (HR-ICP-MS) were used to characterize the starting materials, reaction and final products. The results of the analyses are presented here.
RESUMO
In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.
Assuntos
Tubo de Raio Catódico , Resíduo Eletrônico , Ítrio/isolamento & purificação , Simulação por Computador , Modelos EconômicosRESUMO
A bioleaching study aimed at recovering metals from hazardous spent hydroprocessing catalysts was carried out. The exhaust catalyst was rich in nickel (4.5 mg/g), vanadium (9.4 mg/g) and molybdenum (4.4 mg/g). Involved microorganisms were iron/sulphur oxidizing bacteria. Investigated factors were elemental sulphur addition, ferrous iron addition and actions contrasting a possible metal toxicity (either adding powdered activated charcoal or simulating a cross current process by means of periodical filtration). Ferrous iron resulted to be essential for metal extraction: nickel and vanadium extraction yields were 83% and 90%, respectively, while about 50% with no iron. The observed values for molybdenum extraction yields were not as high as Ni and V ones (the highest values were around 30-40%). The investigated actions aimed at contrasting a possible metal toxicity resulted not to be effective; in contrast, sequential filtration of the liquor leach had a significant negative effect on metals extraction. Nickel and vanadium dissolution kinetics resulted to be significantly faster than molybdenum dissolution ones. Furthermore, a simple first order kinetic model was successfully fitted to experimental data. All the observed results supported the important role of the indirect mechanism in bioleaching of LC-Finer catalysts.
Assuntos
Biotecnologia/métodos , Resíduos Industriais , Metais/química , Petróleo , Acidithiobacillus/química , Acidithiobacillus/metabolismo , Acidithiobacillus thiooxidans/química , Acidithiobacillus thiooxidans/metabolismo , Análise de Variância , Catálise , Compostos Ferrosos/química , Indicadores e Reagentes , Cinética , Molibdênio/química , Níquel/química , Enxofre/química , Vanádio/química , Difração de Raios XRESUMO
In this work, ecotoxicological characteristics of synthetic samples of acid mine drainage (AMD) before and after a combined chemical-biological treatment were investigated by using Lepidium sativum and Daphnia magna. AMD treatment was performed in a two-column apparatus consisting of chemical precipitation by limestone and biological refinement by sulphate reducing bacteria. Synthetic samples of AMD before treatment were toxic for both L. sativum (germination index, G, lower than 10%) and D. magna (100% immobility) due to acid pH and presence of copper and zinc. Chemical treatment (raising pH to 5-6 and eliminating copper) generated effluents with reduced toxicity for L. sativum (G=33%), while 100% immobility was still observed for D. magna. Dynamic trends of toxicity for the first and fifth outputs of the biological column denoted a gradual improvement leading to hormesis for Lepidium (after the initial release of organic excess), while a constant residual toxicity remained for Daphnia (probably due to H(2)S produced by sulphate reducing bacteria).