Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(39): e202407764, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932510

RESUMO

Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a ß-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.


Assuntos
Amidas , Lipopeptídeos , Amidas/química , Lipopeptídeos/síntese química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Modelos Moleculares , Conformação Molecular , Compostos de Sulfidrila/química , Concentração de Íons de Hidrogênio , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos
2.
Front Microbiol ; 15: 1392090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808273

RESUMO

Introduction: Through the combined use of two nitrification inhibitors, Dicyandiamide (DCD) and chlorate with nitrogen amendment, this study aimed to investigate the contribution of comammox Nitrospira clade B, ammonia oxidizing bacteria (AOB) and archaea (AOA) to nitrification in a high fertility grassland soil, in a 90-day incubation study. Methods: The soil was treated with nitrogen (N) at three levels: 0 mg-N kg-1 soil, 50 mg-N kg-1 soil, and 700 mg-N kg-1 soil, with or without the two nitrification inhibitors. The abundance of comammox Nitrospira, AOA, AOB, and nitrite oxidising bacteria (NOB) was measured using qPCR. The comammox Nitrospira community structure was assessed using Illumina sequencing. Results and Discussion: The results showed that the application of chlorate inhibited the oxidation of both NH4+ and NO2- in all three nitrogen treatments. The application of chlorate significantly reduced the abundance of comammox Nitrospira amoA and nxrB genes across the 90-day experimental period. Chlorate also had a significant effect on the beta diversity (Bray-Curtis dissimilarity) of the comammox Nitrospira clade B community. Whilst AOB grew in response to the N substrate additions and were inhibited by both inhibitors, AOA showed litle or no response to either the N substrate or inhibitor treatments. In contrast, comammox Nitrospira clade B were inhibited by the high ammonium concentrations released from the urine substrates. These results demonstrate the differential and niche responses of the three ammonia oxidising communities to N substrate additions and nitrification inhibitor treatments. Further research is needed to investigate the specificity of the two inhibitors on the different ammonia oxidising communities.

3.
J Nat Prod ; 87(4): 764-773, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38423998

RESUMO

The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Humanos , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/síntese química , Klebsiella pneumoniae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
4.
ACS Infect Dis ; 8(12): 2413-2429, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36413173

RESUMO

With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.


Assuntos
Antibacterianos , Polimixina B , Antibacterianos/farmacologia
5.
ACS Med Chem Lett ; 13(4): 632-640, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450374

RESUMO

Antimicrobial drug resistance is a looming health crisis facing us in the modern era, and new drugs are urgently needed to combat this growing problem. Synthetic mimics of antimicrobial peptides have recently emerged as a promising class of compounds for the treatment of persistent microbial infections. In the current study, we investigate five cyclic N-alkylated amphiphilic 2,5-diketopiperazines against 15 different strains of bacteria and fungi, including drug-resistant clinical isolates. Several of the 2,5-diketopiperazines displayed activities similar or superior to antibiotics currently in clinical use, with activities coupled to both the cationic and hydrophobic substituents. All possible stereoisomers of the lead peptide were prepared, and the effects of stereochemistry and amphiphilicity were investigated via 1D and 2D NMR spectroscopy, solution dynamics, and membrane interaction modeling. Clear differences in solution structures and membrane interaction potentials explain the differences seen in the bioactivity and physicochemical properties of each stereoisomer.

6.
Front Chem ; 9: 687875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422759

RESUMO

Malacidin A is a novel calcium-dependent lipopeptide antibiotic with excellent activity against Gram-positive pathogens. Herein, a concise and robust synthetic route toward malacidin A is reported, employing 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis of a linear precursor, including late-stage incorporation of the lipid tail, followed by solution-phase cyclization. The versatility of this synthetic strategy was further demonstrated by synthesis of a diastereomeric variant of malacidin A and a small library of simplified analogues with variation of the lipid moiety.

7.
ACS Infect Dis ; 7(8): 2285-2298, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34259502

RESUMO

The Gram-negative anaerobe Fusobacterium nucleatum is an opportunistic human pathogen, most frequently associated with periodontal disease through dental biofilm formation and, increasingly, with colorectal cancer development and progression. F. nucleatum infections are routinely treated by broad-spectrum ß-lactam antibiotics and metronidazole. However, these antibiotics can negatively impact the normal microflora. Therefore, the development of novel narrow-spectrum antimicrobials active against anaerobic pathogens is of great interest. Here, we examined the antimicrobial Zn ionophore PBT2, an 8-hydroxyquinoline analogue with metal chelating properties, against a single type isolate F. nucleatum ATCC 25586. PBT2-Zn was a potent inhibitor of growth and exhibited synergistic bactericidal (>3-log10 killing) activity at 5× MIC in planktonic cells, and at the MIC in biofilms grown in vitro. Physiological and transcriptional analyses uncovered a strong cellular response relating to Zn and Fe homeostasis in PBT2-Zn treated cells across subinhibitory and inhibitory concentrations. At 1× MIC, PBT2 alone induced a 3.75-fold increase in intracellular Zn, whereas PBT2-Zn challenge induced a 19-fold accumulation of intracellular Zn after 2 h. A corresponding 2.1-fold loss of Fe was observed at 1× MIC. Transcriptional analyses after subinhibitory PBT2-Zn challenge (0.125 µg/mL and 200 µM ZnSO4) revealed significant differential expression of 15 genes at 0.5 h, and 12 genes at 1 h. Upregulated genes included those with roles in Zn homeostasis (e.g., a Zn-transporting ATPase and the Zn-sensing transcriptional regulator, smtB) and hemin transport (hmuTUV) to re-establish Fe homeostasis. A concentration-dependent protective effect was observed for cells pretreated with hemin (50 µg/mL) prior to PBT2-Zn challenge. The data presented here supports our proposal that targeting the disruption of metallostasis by Zn-translocating ionophores is a strategy worth investigating further for the treatment of Gram-negative anaerobic pathogens.


Assuntos
Fusobacterium nucleatum , Zinco , Anaerobiose , Biofilmes , Humanos , Ionóforos
8.
ChemMedChem ; 16(8): 1308-1315, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33320428

RESUMO

A second-generation enantiospecific synthesis of spiroleucettadine is described. The original reported antibacterial activity was not observed when the experiment was repeated on the synthetic samples; however, significant anti-proliferative activity was uncovered for both enantiomers of spiroleucettadine. Comparison of the optical rotational data and ORD-CD spectra of both enantiomers and the reported spectrum from the natural source have not provided a definitive answer regarding the absolute stereochemistry of naturally occurring spiroleucettadine. Efforts then focussed on alteration at the C-4 and C-5 positions of the slightly more active (-)-spiroleucettadine. Ten analogues were synthesised, with three analogues found to possess similar anti-proliferative profiles to spiroleucettadine against the H522 lung cancer cell line.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Compostos de Espiro/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Imidazóis/síntese química , Compostos de Espiro/síntese química , Estereoisomerismo
9.
Bioorg Med Chem ; 29: 115837, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223463

RESUMO

A series of C-2 derivatized 8-sulfonamidoquinolines were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc (50 µM ZnSO4). The vast majority of compounds tested were demonstrated to be significantly more active against S. uberis when in the presence of supplementary zinc (MICs as low as 0.125 µg/mL were observed in the presence of 50 µM ZnSO4). Compounds 5, 34-36, 39, 58, 79, 82, 94 and 95 were shown to display the greatest antibacterial activity against S. aureus (MIC ≤ 8 µg/mL; both in the presence and absence of supplementary zinc), while compounds 56, 58 and 66 were demonstrated to also exhibit activity against E. coli (MIC ≤ 16 µg/mL; under all conditions). Compounds 56, 58 and 66 were subsequently confirmed to be bactericidal against all three mastitis pathogens studied, with MBCs (≥3log10 CFU/mL reduction) of ≤ 32 µg/mL (in both the presence and absence of 50 µM ZnSO4). To validate the sanitizing activity of compounds 56, 58 and 66, a quantitative suspension disinfection (sanitizer) test was performed. Sanitizing activity (>5log10 CFU/mL reduction in 5 min) was observed against both S. uberis and E. coli at compound concentrations as low as 1 mg/mL (compounds 56, 58 and 66), and against S. aureus at 1 mg/mL (compound 58); thereby validating the potential of compounds 56, 58 and 66 to function as topical sanitizers designed explicitly for use in non-human applications.


Assuntos
Amidas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
10.
Org Biomol Chem ; 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32469029

RESUMO

We herein report the synthesis of analogues of the antimicrobial lipopeptide, paenipeptin C', by installing varying lipid moieties using thiol-ene CLipPA (Cysteine Lipidation on a Peptide or Amino Acid) chemistry. Biological evaluation against both Gram-negative and Gram-positive strains indicated that several analogues possessed potent broad-spectrum antimicrobial activity.

11.
Bioorg Med Chem Lett ; 30(11): 127110, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229060

RESUMO

A series of substituted sulfonamide bioisosteres of 8-hydroxyquinoline were evaluated for their antibacterial activity against the common mastitis causative pathogens Streptococcus uberis, Staphylococcus aureus and Escherichia coli, both in the presence and absence of supplementary zinc. Compounds 9a-e, 10a-c, 11a-e, 12 and 13 were demonstrated to have MICs of 0.0625 µg/mL against S. uberis in the presence of 50 µM ZnSO4. Against S. aureus compounds 9g (MIC 4 µg/mL) and 11d (MIC 8 µg/mL) showed the greatest activity, whereas all compounds were found to be inactive against E. coli (MIC > 256 µg/mL); again in the presence of 50 µM ZnSO4. All compounds were demonstrated to be significantly less active in the absence of supplementary zinc. Compound 9g was subsequently confirmed to be bactericidal, with an MBC (≥3log10 cfu/mL reduction) of 0.125 µg/mL against S. uberis in the presence of 50 µM ZnSO4. To validate the sanitising activity of compound 9g in the presence of supplementary zinc, a quantitative suspension disinfection (sanitizer) test was performed. In this preliminary test, sanitizing activity (>5log10 reduction of CFU/mL in 5 min) was observed against S. uberis for compound 9g at concentrations as low as 1 mg/mL, validating the potential of this compound to function as a topical sanitizer against the major environmental mastitis-causing microorganism S. uberis.


Assuntos
Antibacterianos/química , Oxiquinolina/química , Sulfanilamida/química , Zinco/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Oxiquinolina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Relação Estrutura-Atividade
12.
mSphere ; 5(2)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188750

RESUMO

Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis In this work, we show that PBT2 functions as a Zn2+/H+ ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely.IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer's and Huntington's diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.


Assuntos
Antibacterianos/farmacologia , Clioquinol/análogos & derivados , Ionóforos/farmacologia , Streptococcus/efeitos dos fármacos , Zinco/metabolismo , Animais , Bovinos , Clioquinol/farmacologia , Feminino , Mastite Bovina/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores
13.
Chem Sci ; 11(22): 5759-5765, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34094080

RESUMO

We herein report the synthesis and biological and computational evaluation of 12 linear analogues of the cyclic lipopeptide battacin, enabled by Cysteine Lipidation on a Peptide or Amino Acid (CLipPA) technology. Several of the novel "CLipP"ed lipopeptides exhibited low micromolar MICs and MBCs against both Gram-negative and Gram-positive bacteria. The mechanism of action was then simulated with the MIC data using computational methods.

14.
Front Microbiol ; 10: 1995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555233

RESUMO

In this study we investigated the influence of oxygen availability on a phenotypic microtiter screen to identify new, natural product inhibitors of growth for the bovine mastitis-causing microorganisms; Streptococcus uberis, Staphylococcus aureus, and Escherichia coli. Mastitis is a common disease in dairy cattle worldwide and is a major cause of reduced milk yield and antibiotic usage in dairy herds. Prevention of bovine mastitis commonly relies on the application of teat disinfectants that contain either iodine or chlorhexidine. These compounds are used extensively in human clinical settings and increased tolerance to chlorhexidine has been reported in both Gram-positive and Gram-negative microorganisms. As such new, non-human use alternatives are required for the agricultural industry. Our screening was conducted under normoxic (20% oxygen) and hypoxic (<1% oxygen) conditions to mimic the conditions on teat skin and within the mammary gland respectively, against two natural compound libraries. No compounds inhibited E. coli under either oxygen condition. Against the Gram-positive microorganisms, 12 inhibitory compounds were identified under normoxic conditions, and 10 under hypoxic conditions. Data revealed a clear oxygen-dependency amongst compounds inhibiting growth, with only partial overlap between oxygen conditions. The oxygen-dependent inhibitory activity of a naturally occurring quinone, ß-lapachone, against S. uberis was subsequently investigated and we demonstrated that this compound is only active under normoxic conditions with a minimum inhibitory concentration and minimum bactericidal concentration of 32 µM and kills via a reactive oxygen species-dependent mechanism as has been demonstrated in other microorganisms. These results demonstrate the importance of considering oxygen-availability in high-throughput inhibitor discovery.

15.
Open Biol ; 9(6): 190066, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31238823

RESUMO

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The ßE-subunits in all three enzymes are in the conventional 'open' state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.


Assuntos
Difosfato de Adenosina/metabolismo , Fusobacterium nucleatum/enzimologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Fusobacterium nucleatum/química , Hidrólise , Modelos Moleculares , Conformação Molecular , Domínios Proteicos
16.
J Dairy Res ; 86(2): 222-225, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31038086

RESUMO

The performance of a new point-of-care diagnostic (Mastatest), an on-farm test designed to identify bacteria and provide antibiotic sensitivity testing information from milk samples, was compared with standard microbiological culture methods. A total of 292 milk samples from clinical mastitis cases in dairy cows on New Zealand dairy farms were examined, and latent class analysis was used to estimate the performance characteristics of both tests. Two hundred and fifty-six samples (87.7%) demonstrated bacterial infection in standard culture, and 269 (92.1%) using the point-of-care diagnostic. The most common bacterial species detected was Streptococcus uberis, found in 195 samples (66.8%) using standard culture and 190 samples (65.1%) using the point-of-care diagnostic. Latent class analysis found no significant differences in test characteristics between the point-of-care diagnostic and standard culture. The estimated sensitivity and specificity of the point-of-care diagnostic against all targets combined were 94.6 and 72.1% respectively; the corresponding estimates for standard culture were 90.5 and 73.9%. Comparison of antibiotic susceptibility testing using the point-of-care diagnostic and the reference method showed similar trends and, in some cases, identical MIC50 and MIC90 values, with at most one antibiotic dilution difference.


Assuntos
Mastite Bovina/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Infecções Estafilocócicas/veterinária , Infecções Estreptocócicas/veterinária , Animais , Antibacterianos/farmacologia , Técnicas Bacteriológicas/veterinária , Bovinos , Farmacorresistência Bacteriana , Feminino , Leite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Infecções Estreptocócicas/microbiologia , Streptococcus , Consumo de Álcool por Menores
17.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683741

RESUMO

Infants fed breast milk harbor a gut microbiota in which bifidobacteria are generally predominant. The metabolic interactions of bifidobacterial species need investigation because they may offer insight into the colonization of the gut in early life. Bifidobacterium bifidum ATCC 15696 hydrolyzes 2'-O-fucosyl-lactose (2FL; a major fucosylated human milk oligosaccharide) but does not use fucose released into the culture medium. However, fucose is a growth substrate for Bifidobacterium breve 24b, and both strains utilize lactose for growth. The provision of fucose and lactose by B. bifidum (the donor) allowing the growth of B. breve (the beneficiary) conforms to the concept of syntrophy, but both strains will compete for lactose to multiply. To determine the metabolic impact of this syntrophic/competitive relationship on the donor, the transcriptomes of B. bifidum were determined and compared in steady-state monoculture and coculture using transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR). B. bifidum genes upregulated in coculture included those encoding alpha-l-fucosidase and carbohydrate transporters and those involved in energy production and conversion. B. bifidum abundance was the same in coculture as in monoculture, but B. breve dominated the coculture numerically. Cocultures during steady-state growth in 2FL medium produced mostly acetate with little lactate (acetate:lactate molar ratio, 8:1) compared to that in monobatch cultures containing lactose (2:1), which reflected the maintenance of steady-state cells in log-phase growth. Darwinian competition is an implicit feature of bacterial communities, but syntrophy is a phenomenon putatively based on cooperation. Our results suggest that the regulation of syntrophy, in addition to competition, may shape bacterial communities.IMPORTANCE This study addresses the microbiology and function of a natural ecosystem (the infant bowel) using in vitro experimentation with bacterial cultures maintained under controlled growth and environmental conditions. We studied the growth of bifidobacteria whose nutrition centered on the hydrolysis of a human milk oligosaccharide. The results revealed responses relating to metabolism occurring in a Bifidobacterium bifidum strain when it provided nutrients that allowed the growth of Bifidobacterium breve, and so discovered biochemical features of these bifidobacteria in relation to metabolic interaction in the shared environment. These kinds of experiments are essential in developing concepts of bifidobacterial ecology that relate to the development of the gut microbiota in early life.


Assuntos
Bifidobacterium bifidum/crescimento & desenvolvimento , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/crescimento & desenvolvimento , Bifidobacterium breve/metabolismo , Trissacarídeos/metabolismo , Técnicas de Cultura Celular por Lotes , Bifidobacterium bifidum/genética , Bifidobacterium breve/genética , Técnicas de Cocultura , Meios de Cultura/química , Ecossistema , Fucose/metabolismo , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia , Lactose/metabolismo , Leite Humano/química , Oligossacarídeos/metabolismo , Transcriptoma
18.
mBio ; 9(6)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538186

RESUMO

The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer's and Huntington's disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, "On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you."


Assuntos
Antibacterianos/farmacologia , Clioquinol/análogos & derivados , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Bactérias Gram-Positivas/efeitos dos fármacos , Ionóforos/metabolismo , Zinco/metabolismo , Clioquinol/metabolismo , Testes de Sensibilidade Microbiana
19.
Genome Announc ; 6(9)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496837

RESUMO

Streptococcus uberis forms part of the native microbiota of cattle and is able to opportunistically infect the mammary gland; as such, it is a leading cause of bovine mastitis globally. Here, we report the complete genome sequence of S. uberis NZ01, isolated in New Zealand from a cow with a clinical case of bovine mastitis.

20.
Front Aging Neurosci ; 9: 416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311903

RESUMO

Traumatic brain injury (TBI) is a serious public health concern which strikes someone every 15 s on average in the US. Even mild TBI, which comprise as many as 75% of all TBI cases, carries long term consequences. The effects of age and sex on long term outcome from TBI is not fully understood, but due to the increased risk for neurodegenerative diseases after TBI it is important to understand how these factors influence the outcome from TBI. This study examined the neurobehavioral and neuropathological effects of age and sex on the outcome 15 days following repetitive mild traumatic brain injury (r-mTBI) in mice transgenic for human tau (hTau). These mice express the six human isoforms of tau but do not express endogenous murine tau and they develop tau pathology and memory impairment in an age-dependent manner. After 5 mild impacts, aged female mice showed motor impairments that were absent in aged male mice, as well as younger animals. Conversely, aged female sham mice outperformed all other groups of aged mice in a Barnes maze spatial memory test. Pathologically, increases in IBA-1 and GFAP staining typically seen in this model of r-mTBI showed the expected increases with both injury and age, but phosphorylated tau stained with CP13 in the hippocampus (reduced in female sham mice compared to males) and PHF1 in the cortex (reduced in female TBI mice compared to male TBI mice) showed the only histological signs of sex-dependent differences in these mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA