Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Diet Suppl ; : 1-31, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39450425

RESUMO

Botanical supplements, herbal remedies, and plant-derived products are used globally. However, botanical dietary supplements are rarely subjected to robust safety testing unless there are adverse reports in post-market surveillance. Botanicals are complex and difficult to assess using current frameworks designed for single constituent substances (e.g. small molecules or discrete chemicals), making safety assessments costly and time-consuming. The liver is a primary organ of concern for potential botanical-induced hepatotoxicity and botanical-drug interactions as it plays a crucial role in xenobiotic metabolism. The NIH-funded Drug Induced Liver Injury Network noted that the number of botanical-induced liver injuries in 2017 nearly tripled from those observed in 2004-2005. New approach methodologies (NAMs) can aid in the rapid and cost-effective assessment of botanical supplements for potential hepatotoxicity. The Hepatotoxicity Working Group within the Botanical Safety Consortium is working to develop a screening strategy that can help reliably identify potential hepatotoxic botanicals and inform mechanisms of toxicity. This manuscript outlines the Hepatotoxicity Working Group's strategy and describes the assays selected and the rationale for the selection of botanicals used in case studies. The selected NAMs evaluated as a part of this effort are intended to be incorporated into a larger battery of assays to evaluate multiple endpoints related to botanical safety. This work will contribute to a botanical safety toolkit, providing researchers with tools to better understand hepatotoxicity associated with botanicals, prioritize and plan future testing as needed, and gain a deeper insight into the botanicals being tested.

2.
Toxicol Appl Pharmacol ; 489: 117015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917890

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.


Assuntos
Simulação por Computador , Fluorocarbonos , Túbulos Renais Proximais , Modelos Biológicos , Humanos , Fluorocarbonos/farmacocinética , Túbulos Renais Proximais/metabolismo , Meia-Vida , Taxa de Depuração Metabólica , Fluxo de Trabalho , Eliminação Renal , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/metabolismo , Células Epiteliais/metabolismo
3.
Toxicol Sci ; 200(2): 213-227, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38724241

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have become internationally recognized over the past three decades as persistent organic pollutants used in the production of various consumer and industrial goods. Research efforts continue to gauge the risk that historically used, and newly produced, PFAS may cause to human health. Numerous studies report toxic effects of PFAS on the human liver as well as increased serum cholesterol levels in adults. A major concern with PFAS, also dubbed "forever chemicals," is that they accumulate in the liver and kidney and persist in serum. The mechanisms responsible for their disposition and excretion in humans are poorly understood. A better understanding of the interaction of PFAS with liver transporters, as it pertains to the disposition of PFAS and other xenobiotics, could provide mechanistic insight into human health effects and guide efforts toward risk assessment of compounds in development. This review summarizes the current state of the literature on the emerging relationships (eg, substrates, inhibitors, modulators of gene expression) between PFAS and specific hepatic transporters. The adaptive and toxicological responses of hepatocytes to PFAS that reveal linkages to pathologies and epidemiological findings are highlighted. The evidence suggests that our understanding of the molecular landscape of PFAS must improve to determine their impact on the expression and function of hepatocyte transporters that play a key role in PFAS or other xenobiotic disposition. From here, we can assess what role these changes may have in documented human health outcomes.


Assuntos
Fluorocarbonos , Fígado , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fluorocarbonos/toxicidade , Animais , Proteínas de Membrana Transportadoras/metabolismo , Medição de Risco , Poluentes Orgânicos Persistentes/toxicidade , Poluentes Orgânicos Persistentes/metabolismo , Poluentes Ambientais/toxicidade
4.
Drug Metab Dispos ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626992

RESUMO

In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiological and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs). We tested TERT1-immortalized RPTEC, including OAT1-, OCT2- or OAT3-overexpressing variants, and primary RPTECs. Cells were cultured on transwell membranes in static (24-well transwells) and fluidic (transwells in PhysioMimix{trade mark, serif} T12 organ-on-chip with 2 mL/s flow) conditions. Barrier formation, transport, and gene expression were evaluated. We show that two commercially available primary RPTECs were not suitable for studies of directional transport on transwells because they formed a substandard barrier even though they exhibited higher expression of transporters, especially under flow. TERT1-parent, -OAT1 and -OAT3 cells formed robust barriers, but were unaffected by flow. TERT1-OAT1 cells exhibited inhibitable para-aminohippurate transport, it was enhanced by flow. However, efficient tenofovir secretion and perfluorooctanoic acid reabsorption by TERT1-OAT1 cells were not modulated by flow. Gene expression showed that TERT1 and TERT1-OAT1 cells were most correlated with human kidney than other cell lines, but that flow did not have noticeable effects. Overall, our data show that addition of flow to in vitro studies of the renal proximal tubule may afford benefits in some aspects of modeling kidney function, but that careful consideration of the impact such adaptations would have on the cost and throughput of the experiments is needed. Significance Statement The topic of reproducibility and robustness of the complex microphysiological systems is looming large in the field of biomedical research; therefore, the uptake of these new models by the end-users is slow. This study systematically compared various RPTEC sources and experimental conditions, aiming to identify the level of model complexity needed for testing renal tubule transport. We demonstrate that while tissue chips may afford some benefits, their throughput and complexity need careful consideration in each context of use.

6.
Biomed Pharmacother ; 173: 116388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460371

RESUMO

Alzheimer's disease (AD) is the most prevalent type of dementia, disproportionately affecting females, who make up nearly 60% of diagnosed cases. In AD patients, the accumulation of beta-amyloid (Aß) in the brain triggers a neuroinflammatory response driven by neuroglia, worsening the condition. We have previously demonstrated that VU0486846, an orally available positive allosteric modulator (PAM) targeting M1 muscarinic acetylcholine receptors, enhances cognitive function and reduces Aß pathology in female APPswe/PSEN1ΔE9 (APP/PS1) mice. However, it remained unclear whether these improvements were linked to a decrease in neuroglial activation. To investigate, we treated nine-month-old APP/PS1 and wildtype mice with VU0486846 for 8 weeks and analyzed brain slices for markers of microglial activation (ionized calcium binding adaptor molecule 1, Iba1) and astrocyte activation (Glial fibrillary acidic protein, GFAP). We find that VU0486846 reduces the presence of Iba1-positive microglia and GFAP-positive astrocytes in the hippocampus of female APP/PS1 mice and limits the recruitment of these cells to remaining Aß plaques. This study sheds light on an additional mechanism through which novel M1 mAChR PAMs exhibit disease-modifying effects by reducing neuroglial activation and underscore the potential of these ligands for the treatment of AD, especially in females.


Assuntos
Doença de Alzheimer , Morfolinas , Pirazóis , Camundongos , Humanos , Feminino , Animais , Lactente , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Receptor Muscarínico M1 , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
7.
Mol Brain ; 17(1): 9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360671

RESUMO

One of the main hallmarks of Parkinson's disease (PD) is abnormal alpha-synuclein (α-syn) aggregation which forms the main component of intracellular Lewy body inclusions. This short report used preformed α-syn fibrils, as well as an A53T mutant α-syn adenovirus to mimic conditions of pathological protein aggregation in dopaminergic human derived SH-SY5Y neural cells. Since there is evidence that the mTOR pathway and glutamatergic signaling each influence protein aggregation, we also assessed the impact of the mTOR inhibitor, rapamycin and the mGluR5 allosteric modulator, CTEP. We found that both rapamycin and CTEP induced a significant reduction of α-syn fibrils in SH-SY5Y cells and this effect was associated with a reduction in mTOR signaling and enhancement in autophagic pathway factors. These data support the possibility that CTEP (or rapamycin) might be a useful pharmacological approach to target abnormal α-syn accumulation by promoting intracellular degradation or enhanced clearance.


Assuntos
Doença de Parkinson , Receptor de Glutamato Metabotrópico 5 , Serina-Treonina Quinases TOR , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Sirolimo/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo
8.
Anal Bioanal Chem ; 416(1): 175-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910202

RESUMO

Consumers have unprecedented access to botanical dietary supplements through online retailers, making it difficult to ensure product quality and authenticity. Therefore, methods to survey and compare chemical compositions across botanical products are needed. Nuclear magnetic resonance (NMR) spectroscopy and non-targeted mass spectrometry (MS) were used to chemically analyze commercial products labeled as containing one of three botanicals: blue cohosh, goldenseal, and yohimbe bark. Aqueous and organic phase extracts were prepared and analyzed in tandem with NMR followed by MS. We processed the non-targeted data using multivariate statistics to analyze the compositional similarity across extracts. In each case, there were several product outliers that were identified using principal component analysis (PCA). Evaluation of select known constituents proved useful to contextualize PCA subgroups, which in some cases supported or refuted product authenticity. The NMR and MS data reached similar conclusions independently but were also complementary.


Assuntos
Produtos Biológicos , Caulophyllum , Hydrastis , Pausinystalia/química , Hydrastis/química , Caulophyllum/química , Casca de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética , Produtos Biológicos/análise
9.
Bioengineering (Basel) ; 10(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892925

RESUMO

The liver is one of the key organs for exogenous and endogenous metabolism and is often a target for drug- and chemical-driven toxicity. A wide range of experimental approaches has been established to model and characterize the mechanisms of drug- and chemical-induced hepatotoxicity. A number of microfluidics-enabled in vitro models of the liver have been developed, but the unclear translatability of these platforms has hindered their adoption by the pharmaceutical industry; to achieve wide use for drug and chemical safety evaluation, demonstration of reproducibility and robustness under various contexts of use is required. One of these commercially available platforms is the PhysioMimix LC12, a microfluidic device where cells are seeded into a 3D scaffold that is continuously perfused with recirculating cell culture media to mimic liver sinusoids. Previous studies demonstrated this model's functionality and potential applicability to preclinical drug development. However, to gain confidence in PhysioMimix LC12's robustness and reproducibility, supplementary characterization steps are needed, including the assessment of various human hepatocyte sources, contribution of non-parenchymal cells (NPCs), and comparison to other models. In this study, we performed replicate studies averaging 14 days with either primary human hepatocytes (PHHs) or induced pluripotent stem cell (iPSC)-derived hepatocytes, with and without NPCs. Albumin and urea secretion, lactate dehydrogenase, CYP3A4 activity, and metabolism were evaluated to assess basal function and metabolic capacity. Model performance was characterized by different cell combinations under intra- and inter-experimental replication and compared to multi-well plates and other liver platforms. PhysioMimix LC12 demonstrated the highest metabolic function with PHHs, with or without THP-1 or Kupffer cells, for up to 10-14 days. iPSC-derived hepatocytes and PHHs co-cultured with additional NPCs demonstrated sub-optimal performance. Power analyses based on replicate experiments and different contexts of use will inform future study designs due to the limited throughput and high cell demand. Overall, this study describes a workflow for independent testing of a complex microphysiological system for specific contexts of use, which may increase end-user adoption in drug development.

10.
Mol Brain ; 16(1): 67, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726802

RESUMO

Huntington's Disease (HD) is an inherited autosomal dominant neurodegenerative disorder that leads to progressive motor and cognitive impairment due to the expansion of a polyglutamine (CAG) repeat in the N-terminal region of the huntingtin (Htt) protein. The creation of HD mouse models represents a critical step in the research for HD treatment. Among the currently available HD mouse models, the zQ175 knock-in mouse line is the first to display robust disease phenotype on a heterozygous background. The newer FDNQ175 mouse model is derived from the zQ175 mouse line and presents a more aggressive phenotype. Moreover, increasing evidence has implicated sex as a contributing factor in the progression of HD symptoms. Here, we compared the progression of HD phenotypes in male and female heterozygous FDNQ175 mice. We found that both male and female heterozygous mice showed deficits in forelimb grip strength and cognition as early as 6 months of age. However, female FDNQ175 mice were less vulnerable to HD-associated decline in limb coordination and movement. Neither male nor female FDNQ175 mice exhibited reduced locomotor activity in the open field or exhibit consistent differences in anxiety at 6-12 months of age. Both male and female FDNQ175 mice exhibited increased numbers of huntingtin aggregates with age and 8-month-old female FDNQ175 mice had significantly more aggregates than their male counterparts. Taken together, our results provide further evidence that sex can influence the progression of HD phenotype in preclinical animal models and must be taken into consideration for future HD research.


Assuntos
Doença de Huntington , Feminino , Masculino , Animais , Camundongos , Doença de Huntington/genética , Movimento , Agressão , Ansiedade , Transtornos de Ansiedade , Modelos Animais de Doenças
11.
Toxicol Sci ; 196(1): 52-70, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37555834

RESUMO

Microphysiological systems are an emerging area of in vitro drug development, and their independent evaluation is important for wide adoption and use. The primary goal of this study was to test reproducibility and robustness of a renal proximal tubule microphysiological system, OrganoPlate 3-lane 40, as an in vitro model for drug transport and toxicity studies. This microfluidic model was compared with static multiwell cultures and tested using several human renal proximal tubule epithelial cell (RPTEC) types. The model was characterized in terms of the functional transport for various tubule-specific proteins, epithelial permeability of small molecules (cisplatin, tenofovir, and perfluorooctanoic acid) versus large molecules (fluorescent dextrans, 60-150 kDa), and gene expression response to a nephrotoxic xenobiotic. The advantages offered by OrganoPlate 3-lane 40 as compared with multiwell cultures are the presence of media flow, albeit intermittent, and increased throughput compared with other microfluidic models. However, OrganoPlate 3-lane 40 model appeared to offer only limited (eg, MRP-mediated transport) advantages in terms of either gene expression or functional transport when compared with the multiwell plate culture conditions. Although OrganoPlate 3-lane 40 can be used to study cellular uptake and direct toxic effects of small molecules, it may have limited utility for drug transport studies. Overall, this study offers refined experimental protocols and comprehensive comparative data on the function of RPETCs in traditional multiwell culture and microfluidic OrganoPlate 3-lane 40, information that will be invaluable for the prospective end-users of in vitro models of the human proximal tubule.


Assuntos
Túbulos Renais Proximais , Sistemas Microfisiológicos , Humanos , Reprodutibilidade dos Testes , Estudos Prospectivos , Rim
12.
Front Toxicol ; 5: 1194895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288009

RESUMO

The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.

13.
J Neurosci ; 43(23): 4365-4377, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055181

RESUMO

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disease characterized by progressive motor and cognitive impairments, with no disease-modifying therapies yet available. HD pathophysiology involves evident impairment in glutamatergic neurotransmission leading to severe striatal neurodegeneration. The vesicular glutamate transporter-3 (VGLUT3) regulates the striatal network that is centrally affected by HD. Nevertheless, current evidence on the role of VGLUT3 in HD pathophysiology is lacking. Here, we crossed mice lacking Slc17a8 gene (VGLUT3 -/-) with heterozygous zQ175 knock-in mouse model of HD (zQ175:VGLUT3 -/-). Longitudinal assessment of motor and cognitive functions from 6 to 15 months of age reveals that VGLUT3 deletion rescues motor coordination and short-term memory deficits in both male and female zQ175 mice. VGLUT3 deletion also rescues neuronal loss likely via the activation of Akt and ERK1/2 in the striatum of zQ175 mice of both sexes. Interestingly, the rescue in neuronal survival in zQ175:VGLUT3 -/- mice is accompanied by a reduction in the number of nuclear mutant huntingtin (mHTT) aggregates with no change in the total aggregate levels or microgliosis. Collectively, these findings provide novel evidence that VGLUT3, despite its limited expression, can be a vital contributor to HD pathophysiology and a viable target for HD therapeutics.SIGNIFICANCE STATEMENT Dysregulation of the striatal network centrally contributes to the pathophysiology of Huntington's disease (HD). The atypical vesicular glutamate transporter-3 (VGLUT3) has been shown to regulate several major striatal pathologies, such as addiction, eating disorders, or L-DOPA-induced dyskinesia. Yet, our understanding of VGLUT3's role in HD remains unclear. We report here that deletion of the Slc17a8 (Vglut3) gene rescues the deficits in both motor and cognitive functions in HD mice of both sexes. We also find that VGLUT3 deletion activates neuronal survival signaling and reduces nuclear aggregation of abnormal huntingtin proteins and striatal neuron loss in HD mice. Our novel findings highlight the vital contribution of VGLUT3 in HD pathophysiology that can be exploited for HD therapeutic management.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Masculino , Feminino , Animais , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteína Huntingtina/genética
14.
Curr Neuropharmacol ; 21(2): 273-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34530715

RESUMO

Glutamate, the major excitatory neurotransmitter in the brain exerts its effects via both ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). There are three subgroups of mGluRs, pre-synaptic Group II and Group III mGluRs and post-synaptic Group I mGluRs. mGluRs are ubiquitously expressed in the brain and their activation is poised upstream of a myriad of signaling pathways, resulting in their implication in the pathogenesis of various neurodegenerative diseases including, Alzheimer's Disease (AD). While the exact mechanism of AD etiology remains elusive, ß-amyloid (Aß) plaques and hyperphosphorylated tau tangles remain the histopathological hallmarks of AD. Though less electrically excitable, neuroglia are a major non-neuronal cell type in the brain and are composed of astrocytes, microglia, and oligodendrocytes. Astrocytes, microglia, and oligodendrocytes provide structural and metabolic support, active immune defence, and axonal support and sheathing, respectively. Interestingly, Aß and hyperphosphorylated tau are known to disrupt the neuroglial homeostasis in the brain, pushing them towards a more neurotoxic state. In this review, we discuss what is currently known regarding the expression patterns of various mGluRs in neuroglia and how Aß and tau alter the normal mGluR function in the neuroglia and contribute to the pathophysiology of AD.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Humanos , Doença de Alzheimer/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Neuroglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transdução de Sinais/fisiologia
15.
Curr Opin Toxicol ; 322022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311298

RESUMO

Botanicals can cause nephrotoxicity via numerous mechanisms, including disrupting renal blood flow, damaging compartments along the nephron, and obstructing urinary flow. While uncommon, there are various reports of botanical-induced nephrotoxicity in the literature, such as from aristolochia (Aristolochia spp.) and rhubarb (Rheum spp.). However, at present, it is a challenge to assess the toxic potential of botanicals because their chemical composition is variable due to factors such as growing conditions and extraction techniques. Therefore, selecting a single representative sample for an in vivo study is difficult. Given the increasing use of botanicals as dietary supplements and herbal medicine, new approach methodologies (NAMs) are needed to evaluate the potential for renal toxicity to ensure public safety. Such approaches include in vitro models that use layers of physiological complexity to emulate the in vivo microenvironment, enhance the functional viability and differentiation of cell cultures, and improve sensitivity to nephrotoxic insults. Furthermore, computational tools such as physiologically based pharmacokinetic (PBPK) modeling can add confidence to these tools by simulating absorption, distribution, metabolism, and excretion. The development and implementation of NAMs for renal toxicity testing will allow specific mechanistic data to be generated, leading to a better understanding of the nephrotoxic potential of botanicals.

16.
Pharmacol Ther ; 239: 108275, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36038019

RESUMO

Glutamate is the primary excitatory neurotransmitter in the brain and plays critical roles in all aspects of neuronal function. Disruption of normal glutamate transmission has been implicated in a variety of neurodegenerative and neuropsychiatric diseases. Glutamate exerts its effect through ionotropic and metabotropic glutamate receptors (mGluRs). mGluR2 and mGluR3 are members of the Group II mGluR family and their activation leads to the inhibition of glutamate release from presynaptic nerve terminals and is also poised upstream of a myriad of signaling pathways in postsynaptic nerve terminals and neuroglia. Therefore, mGluR2 and mGluR3 have been considered as potential drug targets for the treatment of many neurological conditions and several compounds targeting these receptors have been developed. In this review, we discuss what is currently known regarding the contribution of mGluR2 and mGluR3 to the pathophysiology of some neurodegenerative and neuropsychiatric diseases including Amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's diseases, schizophrenia and depression as well as drug addiction. We then highlight the evidence supporting the use of various drugs including orthosteric and allosteric ligands acting on either mGluR2, mGluR3 or both for the management of these brain disorders.


Assuntos
Receptores de Glutamato Metabotrópico , Humanos , Receptores de Glutamato Metabotrópico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo
17.
Toxicol Sci ; 188(2): 143-152, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35689632

RESUMO

Much has been written and said about the promise and excitement of microphysiological systems, miniature devices that aim to recreate aspects of human physiology on a chip. The rapid explosion of the offerings and persistent publicity placed high expectations on both product manufacturers and regulatory agencies to adopt the data. Inevitably, discussions of where this technology fits in chemical testing paradigms are ongoing. Some end-users became early adopters, whereas others have taken a more cautious approach because of the high cost and uncertainties of their utility. Here, we detail the experience of a public-private collaboration established for testing of diverse microphysiological systems. Collectively, we present a number of considerations on practical aspects of using microphysiological systems in the context of their applications in decision-making. Specifically, future end-users need to be prepared for extensive on-site optimization and have access to a wide range of imaging and other equipment. We reason that cells, related reagents, and the technical skills of the research staff, not the devices themselves, are the most critical determinants of success. Extrapolation from concentration-response effects in microphysiological systems to human blood or oral exposures, difficulties with replicating the whole organ, and long-term functionality remain as critical challenges. Overall, we conclude that it is unlikely that a rodent- or human-equivalent model is achievable through a finite number of microphysiological systems in the near future; therefore, building consensus and promoting the gradual incorporation of these models into tiered approaches for safety assessment and decision-making is the sensible path to wide adoption.


Assuntos
Dispositivos Lab-On-A-Chip , Humanos
18.
Toxicol In Vitro ; 83: 105412, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35688329

RESUMO

The liver is a pivotal organ regulating critical developmental stages of fetal metabolism and detoxification. Though numerous studies have evaluated links between prenatal/perinatal exposures and adverse health outcomes in the developing fetus, the central role of liver to health disruptions resulting from these exposures remains understudied, especially concerning early development and later-in-life health outcomes. While numerous in vitro methods for evaluating liver toxicity have been established, the use of iPSC-derived hepatocytes appears to be particularly well suited to contribute to this critical research gap due to their potential to model a diverse range of disease phenotypes and different stages of liver development. The following key aspects are reviewed: (1) an introduction to developmental liver toxicity; (2) an introduction to embryonic and induced pluripotent stem cell models; (3) methods and challenges for deriving liver cells from stem cells; and (4) applications for iPSC-derived hepatocytes to evaluate liver developmental stages and their associated responses to insults. We conclude that iPSC-derived hepatocytes have great potential for informing liver toxicity and underlying disease mechanisms via the generation of patient-specific iPSCs; implementing large-scale drug and chemical screening; evaluating general biological responses as a potential surrogate target cell; and evaluating inter-individual disease susceptibility and response variability.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Gravidez
19.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443989

RESUMO

Type 3 vesicular glutamate transporter (VGLUT3) represents a unique modulator of glutamate release from both nonglutamatergic and glutamatergic varicosities within the brain. Despite its limited abundance, VGLUT3 is vital for the regulation of glutamate signaling and, therefore, modulates the activity of various brain microcircuits. However, little is known about how glutamate receptors are regulated by VGLUT3 across different brain regions. Here, we used VGLUT3 constitutive knock-out (VGLUT3-/-) mice and explored how VGLUT3 deletion influences total and cell surface expression of different ionotropic and metabotropic glutamate receptors. VGLUT3 deletion upregulated the overall expression of metabotropic glutamate receptors mGluR5 and mGluR2/3 in the cerebral cortex. In contrast, no change in the total expression of ionotropic NMDAR glutamate receptors were observed in the cerebral cortex of VGLUT3-/- mice. We noted significant reduction in cell surface levels of mGluR5, NMDAR2A, NMDAR2B, as well as reductions in dopaminergic D1 receptors and muscarinic M1 acetylcholine receptors in the hippocampus of VGLUT3-/- mice. Furthermore, mGluR2/3 total expression and mGluR5 cell surface levels were elevated in the striatum of VGLUT3-/- mice. Last, AMPAR subunit GluA1 was significantly upregulated throughout cortical, hippocampal, and striatal brain regions of VGLUT3-/- mice. Together, these findings complement and further support the evidence that VGLUT3 dynamically regulates glutamate receptor densities in several brain regions. These results suggest that VGLUT3 may play an intricate role in shaping glutamatergic signaling and plasticity in several brain areas.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos , Proteínas Vesiculares de Transporte de Glutamato , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
20.
Front Mol Neurosci ; 15: 801757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185467

RESUMO

Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disorder that leads to progressive motor and cognitive impairment. There are currently no available disease modifying treatments for HD patients. We have previously shown that pharmacological blockade of metabotropic glutamate receptor 5 (mGluR5) signaling rescues motor deficits, improves cognitive impairments and mitigates HD neuropathology in male zQ175 HD mice. Mounting evidence indicates that sex may influence HD progression and we have recently reported a sex-specific pathological mGluR5 signaling in Alzheimer's disease (AD) mice. Here, we compared the outcomes of treatment with the mGluR5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4-yl]ethynyl]pyridine) in both male and female symptomatic zQ175 mice. We found that female zQ175 mice required a longer treatment duration with CTEP than male mice to show improvement in their rotarod performance. Unlike males, chronic CTEP treatment did not improve the grip strength nor reverse the cognitive decline of female zQ175 mice. However, CTEP reduced the number of huntingtin aggregates, improved neuronal survival and decreased microglia activation in the striatum of both male and female zQ175 mice. Together, our results indicate that mGluR5 antagonism can reduce HD neuropathology in both male and female zQ175 HD mice, but sex has a clear impact on the efficacy of the treatment and must be taken into consideration for future HD drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA