Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4841, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404770

RESUMO

RAS proteins are GTPases that lie upstream of a signaling network impacting cell fate determination. How cells integrate RAS activity to balance proliferation and cellular senescence is still incompletely characterized. Here, we identify ZNF768 as a phosphoprotein destabilized upon RAS activation. We report that ZNF768 depletion impairs proliferation and induces senescence by modulating the expression of key cell cycle effectors and established p53 targets. ZNF768 levels decrease in response to replicative-, stress- and oncogene-induced senescence. Interestingly, ZNF768 overexpression contributes to bypass RAS-induced senescence by repressing the p53 pathway. Furthermore, we show that ZNF768 interacts with and represses p53 phosphorylation and activity. Cancer genomics and immunohistochemical analyses reveal that ZNF768 is often amplified and/or overexpressed in tumors, suggesting that cells could use ZNF768 to bypass senescence, sustain proliferation and promote malignant transformation. Thus, we identify ZNF768 as a protein linking oncogenic signaling to the control of cell fate decision and proliferation.


Assuntos
Senescência Celular/genética , Genes ras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genômica , Células HeLa , Humanos , Oncogenes , Fenótipo , Fosfoproteínas , Fosforilação , Repressão Psicológica , Transdução de Sinais , Proteínas ras/genética
2.
J Cell Sci ; 133(4)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32005696

RESUMO

USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.


Assuntos
Núcleo Celular , Sinais de Exportação Nuclear , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Interfase , Sinais de Exportação Nuclear/genética , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo
4.
Appl Microbiol Biotechnol ; 99(9): 3875-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25403337

RESUMO

The yeast Pichia pastoris is one of the most robust cell factories in use for the large-scale production of biopharmaceuticals with applications in the fields of human and animal health. Recently, intracellular high-level expression of rabbit hemorrhagic disease virus (RHDV) capsid protein (VP1) as a self-assembled multipurpose antigen/carrier was established as a production process from P. pastoris. Since recovery of VP1 from the culture media implies technological and economic advantages, the secretion of VP1 variants was undertaken in this work. Conversely, extensive degradation of VP1 was detected. Variations to culture parameters and supplementation with different classes of additives were unable to diminish degradation. Strategies were then conducted during fermentations using a recombinant variant of a non-specific BPTI-Kunitz-type protease inhibitor (rShPI-1A) isolated from the sea anemone Stichodactyla helianthus. The presence of the inhibitor in the culture medium at the recombinant protein induction phase, as well as co-culture of the yeast strains expressing VP1 and rShPI-1A, led to VP1 protection from proteolysis and to production of ordered virus-like particles. A yeast strain was also engineered to co-express the rShPI-1A inhibitor and intact VP1. Expression levels up to 116 mg L(-1) of VP1 were reached under these approaches. The antigen was characterized and purified in a single chromatography step, its immunogenic capacity was evaluated, and a detection test for specific antibodies was developed. This work provides feasible strategies for improvements in P. pastoris heterologous protein secretion and is the first report on co-expression of the ShPI-1A with a recombinant product otherwise subjected to proteolytic degradation.


Assuntos
Vírus da Doença Hemorrágica de Coelhos/genética , Pichia/metabolismo , Inibidores de Proteases/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Estruturais Virais/metabolismo , Virossomos/metabolismo , Animais , Fermentação , Pichia/genética , Proteínas Recombinantes/genética , Anêmonas-do-Mar/genética , Proteínas Estruturais Virais/genética , Virossomos/genética
5.
PLoS One ; 8(2): e56417, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460801

RESUMO

Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans.


Assuntos
Infecções por Caliciviridae/prevenção & controle , Vírus da Doença Hemorrágica de Coelhos/imunologia , Conformação Molecular , Pichia/metabolismo , Temperatura , Vacinas Virais/biossíntese , Vírion/imunologia , Sequência de Aminoácidos , Animais , Soluções Tampão , Infecções por Caliciviridae/imunologia , Cromatografia em Gel , Peste Suína Clássica/imunologia , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica/imunologia , Resposta ao Choque Térmico , Hemaglutinação , Concentração de Íons de Hidrogênio , Imunização , Dados de Sequência Molecular , Concentração Osmolar , Peptídeos/química , Peptídeos/imunologia , Coelhos , Sefarose , Suínos , Vírion/ultraestrutura , Viscosidade
6.
Vaccine ; 30(10): 1782-9, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22245603

RESUMO

Ticks are acaridae ectoparasites that, while taking a blood meal, can transmit viruses, bacteria, protozoa and filarial nematodes, which cause a variety of human and animal illnesses. The use of chemical pesticides constitutes the primary measure for control of these ectoparasites. However, the intensive use of these chemicals has drawbacks such as the contamination of food, environmental pollution and development of resistance by ectoparasites. Vaccination is considered a promising alternative for controlling infestations by ectoparasites. Although emerging tick proteins have been identified recently, and have been proposed as potential targets for generating protective molecules, only a limited number of them have been evaluated in vaccine trials. More than 80 proteins are found in eukaryotic ribosomes. The protein P0 is essential for the assembly of the 60S ribosomal subunit. We have identified an immunogenic region of the ribosomal protein P0 from Rhipicephalus sp. ticks that is not very conserved compared to host P0. The efficacy of a 20 amino acid synthetic peptide from this sequence was assayed as a vaccine antigen against Rhipicephalus sanguineus infestations in an immunization and challenge experiment on rabbits. A remarkable diminution in the viability of newly molted nymphs from larvae fed on vaccinated rabbits was observed. The number of adults and the number of eggs hatching were significantly reduced, with an overall efficacy of 90%. Our results demonstrated that immunization with an immunogenic peptide of tick protein P0 greatly reduced survival of ticks, suggesting that it has promise as an effective tick control agent.


Assuntos
Proteínas de Artrópodes/imunologia , Rhipicephalus sanguineus/imunologia , Infestações por Carrapato/veterinária , Vacinas/imunologia , Sequência de Aminoácidos , Animais , Feminino , Masculino , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/imunologia , Coelhos , Controle de Ácaros e Carrapatos/métodos , Infestações por Carrapato/prevenção & controle , Vacinas Sintéticas/imunologia
7.
Vet Immunol Immunopathol ; 142(3-4): 179-88, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21621855

RESUMO

Rabbit hemorrhagic disease virus (RHDV) is the etiological agent of a lethal and contagious disease of rabbits that remains as a serious problem worldwide. As this virus does not replicate in cell culture systems, the capsid protein gene has been expressed in heterologous hosts or inserted in replication-competent viruses in order to obtain non-conventional RHDV vaccines. However, due to technological or safety issues, current RHDV vaccines are still prepared from organs of infected rabbits. In this work, two human type 5 derived replication-defective adenoviruses encoding the rabbit hemorrhagic disease virus VP60 capsid protein were constructed. The recombinant protein was expressed as a multimer in mouse and rabbit cell lines at levels that ranged from approximately 120 to 160 mg/L of culture. Mice intravenously or subcutaneously inoculated with a single 10(8) gene transfer units (GTU) dose of the AdVP60 vector (designed for VP60 intracellular expression) seroconverted at days 7 and 14 post-immunization, respectively. This vector generated a stronger response than that obtained with a second vector (AdVP60sec) designed for VP60 secretion. Rabbits were then immunized by parenteral or mucosal routes with a single 10(9)GTU dose of the AdVP60 and the antibody response was evaluated using a competition ELISA specific for RHDV or RHDVa. Protective hemagglutination inhibition (HI) titers were also promptly detected and IgG antibodies corresponding with inhibition percentages over 85% persisted up to one year in all rabbits, independently of the immunization route employed. These levels were similar to those elicited with inactivated RHDV or with VP60 obtained from yeast or insect cells. IgA specific antibodies were only found in saliva of rabbits immunized by intranasal instillation. The feasibility of VP60 production and vaccination of rabbits with replication-defective adenoviral vectors was demonstrated.


Assuntos
Infecções por Caliciviridae/veterinária , Vetores Genéticos/imunologia , Vírus da Doença Hemorrágica de Coelhos/imunologia , Coelhos/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Administração através da Mucosa , Animais , Anticorpos Antivirais/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Vetores Genéticos/genética , Testes de Inibição da Hemaglutinação/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Imunização/métodos , Imunização/veterinária , Camundongos , Camundongos Endogâmicos BALB C , Coelhos/virologia , Distribuição Aleatória , Estatísticas não Paramétricas , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Estruturais Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
8.
BMC Vet Res ; 6: 43, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20846415

RESUMO

BACKGROUND: The cattle tick, Rhipicephalus (Boophilus) microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core element of broad control programs against this ectoparasite, in which acquired immunity in cattle to Bm86 is combined with a rational use of acaricides. At present, the conventional vaccine scheme consists of three doses that should be administered at weeks 0, 4 and 7, followed by a booster every six months. RESULTS: In this study we assayed a reduction in the number of the initial doses of Gavacplus, evaluated the time course and the level of bovine anti-Bm86 antibodies elicited, and analyzed the vaccine effect on ticks engorging on immunized cattle under production conditions. Following three different immunization schemes, the bovines developed a strong and specific immune response characterized by elevated anti-Bm86 IgG titers. A reduction in the weight of engorging female ticks, in the weight of the eggs laid and also in R. microplus viable eggs percentage was obtained by using only two doses of Gavacplus administered at weeks 0 and 4, followed by a booster six months later. This reduction did not differ from the results obtained on ticks engorging on cattle immunized at weeks 0, 4 and 7. It was also demonstrated that anti-Bm86 antibody titers over 1:640, measured in bovines immunized at weeks 0 and 4, were sufficient to affect weight and reproductive potential of female ticks as compared with ticks engorging on unvaccinated animals. In addition, no statistically significant differences were detected in the average weight of eggs laid by ticks engorged on immunized cattle that showed anti-Bm86 specific titers in the range of 1:640 to 1:81920. CONCLUSION: The administration of two initial doses of Gavacplus containing 100 µg of Bm86 antigen to non-immunized cattle under production conditions is sufficient to affect the weight and the reproductive capacity of R. microplus engorging females. According to these results, cattle herds' manipulation and vaccine costs could be potentially reduced with a positive impact on the implementation of integrated control programs against R. microplus.


Assuntos
Doenças dos Bovinos/parasitologia , Imunização/veterinária , Glicoproteínas de Membrana/imunologia , Proteínas Recombinantes/imunologia , Rhipicephalus/imunologia , Infestações por Carrapato/veterinária , Vacinas/imunologia , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Imunização/métodos , Imunização/normas , Imunoglobulina G/sangue , Glicoproteínas de Membrana/genética , Distribuição Aleatória , Proteínas Recombinantes/genética , Rhipicephalus/crescimento & desenvolvimento , Estatísticas não Paramétricas , Infestações por Carrapato/imunologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/prevenção & controle , Vacinas/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
9.
Antiviral Res ; 81(1): 25-36, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18824033

RESUMO

Rabbit hemorrhagic disease virus (RHDV) VP60 capsid protein was recently expressed at approximately 1.5 gL(-1) associated with the disruption pellet of Pichia pastoris, thus requiring an additional process of extraction by solubilization. Consequently, the expression of a soluble variant of VP60 was undertaken in order to attain an easier approach for vaccine production. The VP60 gene was cloned without secretion signal under the transcriptional control of the AOX1 yeast promoter. The antigen obtained was intracellular and soluble at approximately 480 mg L(-1). Its characterization by size-exclusion HPLC, ultracentrifugation, and electron microscopy, showed the presence of high molecular weight structures similar in mass, size and buoyant density to native RHDV. The antigenic profile was similar to that from authentic virions as determined with monoclonal antibodies directed against RHDV conformational epitopes. These analyses, conducted on VP60 obtained insoluble in P. pastoris revealed the formation of protein aggregates rather than the presence of ordered multimeric structures. An immunization trial was conducted in which the soluble VP60 was employed by subcutaneous (s.c.) injection either purified by a single chromatographic step or contained within raw disruption supernatant, emulsified in Montanide 888. The insoluble variant was administered as a yeast extract powder by oral and s.c. routes. The earliest IgG response, titers and persistence of antibodies were studied by competition ELISA and hemagglutination inhibition (HI) assays. All rabbits immunized with the yeast-derived antigens developed a strong RHDV-specific response (including the "RHDVa" subtype) that lasted over one year after the primary immunization. Early HI titers up to 1/40 960 were generated. The immune response was similar to that induced by VP60 from Sf9 cells and superior to the response elicited with inactivated RHDV. Overall it was found that the soluble VP60 multimers, safely and easily produced in P. pastoris, are a valuable candidate for the rational implementation of a low-cost, scalable subunit vaccine against RHDV.


Assuntos
Infecções por Caliciviridae/veterinária , Proteínas do Capsídeo/imunologia , Vírus da Doença Hemorrágica de Coelhos/imunologia , Pichia/metabolismo , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Expressão Gênica , Vírus da Doença Hemorrágica de Coelhos/genética , Imunização/veterinária , Imunoglobulina G/sangue , Pichia/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Vacinas Virais/economia , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA