Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomolecules ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397401

RESUMO

Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with RET as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.


Assuntos
Doença de Hirschsprung , MicroRNAs , Humanos , Doença de Hirschsprung/genética , Multiômica , MicroRNAs/genética , Biologia Computacional , Biomarcadores
2.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175550

RESUMO

Thyroid carcinoma (TC) can be classified as medullary (MTC) and non-medullary (NMTC). While most TCs are sporadic, familial forms of MTC and NMTC also exist (less than 1% and 3-9% of all TC cases, respectively). Germline mutations in RET are found in more than 95% of familial MTC, whereas familial NMTC shows a high degree of genetic heterogeneity. Herein, we aimed to identify susceptibility genes for familial NMTC and non-RET MTC by whole exome sequencing in 58 individuals belonging to 18 Spanish families with these carcinomas. After data analysis, 53 rare candidate segregating variants were identified in 12 of the families, 7 of them located in previously TC-associated genes. Although no common mutated genes were detected, biological processes regulating functions such as cell proliferation, differentiation, survival and adhesion were enriched. The reported functions of the identified genes together with pathogenicity and structural predictions, reinforced the candidacy of 36 of them, suggesting new loci related to TC and novel genotype-phenotype correlations. Therefore, our strategy provides clues to possible molecular mechanisms underlying familial forms of MTC and NMTC. These new molecular findings and clinical data of patients may be helpful for the early detection, development of tailored therapies and optimizing patient management.


Assuntos
Carcinoma , Neoplasias da Glândula Tireoide , Humanos , Sequenciamento do Exoma , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação em Linhagem Germinativa
3.
Clin Epigenetics ; 13(1): 51, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750457

RESUMO

BACKGROUND: Hirschsprung disease (HSCR, OMIM 142623) is a rare congenital disorder that results from a failure to fully colonize the gut by enteric precursor cells (EPCs) derived from the neural crest. Such incomplete gut colonization is due to alterations in EPCs proliferation, survival, migration and/or differentiation during enteric nervous system (ENS) development. This complex process is regulated by a network of signaling pathways that is orchestrated by genetic and epigenetic factors, and therefore alterations at these levels can lead to the onset of neurocristopathies such as HSCR. The goal of this study is to broaden our knowledge of the role of epigenetic mechanisms in the disease context, specifically in DNA methylation. Therefore, with this aim, a Whole-Genome Bisulfite Sequencing assay has been performed using EPCs from HSCR patients and human controls. RESULTS: This is the first study to present a whole genome DNA methylation profile in HSCR and reveal a decrease of global DNA methylation in CpG context in HSCR patients compared with controls, which correlates with a greater hypomethylation of the differentially methylated regions (DMRs) identified. These results agree with the de novo Methyltransferase 3b downregulation in EPCs from HSCR patients compared to controls, and with the decrease in the global DNA methylation level previously described by our group. Through the comparative analysis of DMRs between HSCR patients and controls, a set of new genes has been identified as potential susceptibility genes for HSCR at an epigenetic level. Moreover, previous differentially methylated genes related to HSCR have been found, which validates our approach. CONCLUSIONS: This study highlights the relevance of an adequate methylation pattern for a proper ENS development. This is a research area that provides a novel approach to deepen our understanding of the etiopathogenesis of HSCR.


Assuntos
Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Crista Neural/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Ilhas de CpG , Metilação de DNA , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/patologia , Epigênese Genética , Epigenômica , Feminino , Predisposição Genética para Doença , Genoma/genética , Doença de Hirschsprung/fisiopatologia , Humanos , Lactente , Masculino , Crista Neural/citologia , Crista Neural/patologia , Transdução de Sinais , Sequenciamento Completo do Genoma/métodos
4.
Orphanet J Rare Dis ; 16(1): 4, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407723

RESUMO

The relevant role of long non-coding RNAs (lncRNAs) in cancer is currently a matter of increasing interest. Medullary thyroid cancer (MTC) is a rare neuroendocrine tumor (2-5% of all thyroid cancer) derived from the parafollicular C-cells which secrete calcitonin. About 75% of all medullary thyroid cancers are believed to be sporadic medullary thyroid cancer (sMTC), whereas the remaining 25% correspond to inherited cancer syndromes known as Multiple Endocrine Neoplasia type 2 (MEN2). MEN2 syndrome, with autosomal dominant inheritance is caused by germline gain of function mutations in RET proto-oncogene. To date no lncRNA has been associated to MEN2 syndrome and only two articles have been published relating long non-coding RNA (lncRNA) to MTC: the first one linked MALAT1 with sMTC and, in the other, our group determined some new lncRNAs in a small group of sMTC cases in fresh tissue (RMST, FTX, IPW, PRNCR1, ADAMTS9-AS2 and RMRP). The aim of the current study is to validate such novel lncRNAs previously described by our group by using a larger cohort of patients, in order to discern their potential role in the disease. Here we have tested three up-regulated (RMST, FTX, IPW) and one down-regulated (RMRP) lncRNAs in our samples (formalin fixed paraffin embedded tissues from twenty-one MEN2 and ten sMTC patients) by RT-qPCR analysis. The preliminary results reinforce the potential role of RMST, FTX, IPW and RMRP in the pathogenesis of MTC.


Assuntos
Carcinoma Medular , Neoplasia Endócrina Múltipla Tipo 2a , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Carcinoma Neuroendócrino , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/genética
5.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260622

RESUMO

Hirschsprung disease (HSCR) is a neurocristopathy characterized by intestinal aganglionosis which is attributed to a failure in neural crest cell (NCC) development during the embryonic stage. The colonization of the intestine by NCCs is a process finely controlled by a wide and complex gene regulatory system. Several genes have been associated with HSCR, but many aspects still remain poorly understood. The present study is focused on deciphering the PAX6 interaction network during enteric nervous system (ENS) formation. A combined experimental and computational approach was performed to identify PAX6 direct targets, as well as gene networks shared among such targets as potential susceptibility factors for HSCR. As a result, genes related to PAX6 either directly (RABGGTB and BRD3) or indirectly (TGFB1, HRAS, and GRB2) were identified as putative genes associated with HSCR. Interestingly, GRB2 is involved in the RET/GDNF/GFRA1 signaling pathway, one of the main pathways implicated in the disease. Our findings represent a new contribution to advance in the knowledge of the genetic basis of HSCR. The investigation of the role of these genes could help to elucidate their implication in HSCR onset.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sistema Nervoso Entérico/embriologia , Doença de Hirschsprung/embriologia , Doença de Hirschsprung/genética , Animais , Sequência de Bases , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma , Camundongos , Motivos de Nucleotídeos/genética , Fator de Transcrição PAX6/metabolismo , Esferoides Celulares/patologia
6.
Int J Mol Sci ; 21(15)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748823

RESUMO

Hirschsprung disease (HSCR) is a neurocristopathy defined by intestinal aganglionosis due to alterations during the development of the Enteric Nervous System (ENS). A wide spectrum of molecules involved in different signaling pathways and mechanisms have been described in HSCR onset. Among them, epigenetic mechanisms are gaining increasing relevance. In an effort to better understand the epigenetic basis of HSCR, we have performed an analysis for the identification of long non-coding RNAs (lncRNAs) by qRT-PCR in enteric precursor cells (EPCs) from controls and HSCR patients. We aimed to test the presence of a set lncRNAs among 84 lncRNAs in human EPCs, which were previously related with crucial cellular processes for ENS development, as well as to identify the possible differences between HSCR patients and controls. As a result, we have determined a set of lncRNAs with positive expression in human EPCs that were screened for mutations using the exome data from our cohort of HSCR patients to identify possible variants related to this pathology. Interestingly, we identified three lncRNAs with different levels of their transcripts (SOCS2-AS, MEG3 and NEAT1) between HSCR patients and controls. We propose such lncRNAs as possible regulatory elements implicated in the onset of HSCR as well as potential biomarkers of this pathology.


Assuntos
Biomarcadores/metabolismo , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Doença de Hirschsprung/genética , RNA Longo não Codificante/genética , Células Cultivadas , Sistema Nervoso Entérico/citologia , Feminino , Variação Genética , Doença de Hirschsprung/diagnóstico , Humanos , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Genes (Basel) ; 10(11)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717449

RESUMO

Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the different forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the different noncoding RNAs associated with the disease.


Assuntos
RNA não Traduzido/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Epigenômica , Genética , Humanos , Prognóstico , Glândula Tireoide/patologia
8.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247956

RESUMO

Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3'UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Doença de Hirschsprung/genética , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Estudos de Associação Genética/métodos , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/terapia , Histonas/metabolismo , Humanos , Proteínas do Grupo Polycomb/metabolismo , RNA não Traduzido/genética
9.
Sci Rep ; 7(1): 6221, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740121

RESUMO

Hirschsprung disease (HSCR) is attributed to a failure of neural crest cells (NCCs) to migrate, proliferate, differentiate and/or survive in the bowel wall during embryonic Enteric Nervous System (ENS) development. ENS formation is the result from a specific gene expression pattern regulated by epigenetic events, such DNA methylation by the DNA methyltransferases (DNMTs), among other mechanisms. Specifically, DNMT3b de novo methyltransferase is associated with NCCs development and has been shown to be implicated in ENS formation and in HSCR. Aiming to elucidate the specific mechanism underlying the DNMT3b role in such processes, we have performed a chromatin immunoprecipitation coupled with massively parallel sequencing analysis to identify the DNMT3B target genes in enteric precursor cells (EPCs) from mice. Moreover, the expression patterns of those target genes have been analyzed in human EPCs from HSCR patients in comparison with controls. Additionally, we have carried out a search of rare variants in those genes in a HSCR series. Through this approach we found 9 genes showing a significantly different expression level in both groups. Therefore, those genes may have a role in the proper human ENS formation and a failure in their expression pattern might contribute to this pathology.


Assuntos
Biomarcadores/análise , DNA (Citosina-5-)-Metiltransferases/metabolismo , Sistema Nervoso Entérico/patologia , Doença de Hirschsprung/genética , Crista Neural/patologia , Idade de Início , Animais , Estudos de Casos e Controles , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Sistema Nervoso Entérico/metabolismo , Epigenômica , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Hirschsprung/patologia , Humanos , Lactente , Masculino , Camundongos , Crista Neural/metabolismo , Organogênese , DNA Metiltransferase 3B
10.
Biomed Res Int ; 2017: 9165363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29349085

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common adult muscular dystrophy and presents an autosomal dominant inheritance. A reproductive option for the families affected is preimplantation genetic diagnosis (PGD). One limitation of this option is the nonoptimal response to ovarian stimulation of the women with DM1, although controversial results exist regarding this subject. In this study, we have analyzed the results of the PGD program applied to DM1 at our institution. A total of 35 couples have been included in our program since 2010, and 59 cycles have been performed. The percentage of transfers per cycle was 64.4% and the live birth rate per cycle was 18.6%. Interestingly, statistically significant differences were observed for the clinical results in the group of couples with an affected female versus the group with an affected male or versus a group of couples with different referral reasons. Specifically, both the percentage of mature oocytes out of the total oocytes retrieved and the percentage of fertilization were considerably lower in the group of DM1 females. Our findings would suggest the possibility of achieving less favourable PGD outcomes in women with DM1 in comparison with other pathologies, although the underlying mechanism remains unknown.


Assuntos
Distrofia Miotônica , Resultado da Gravidez , Diagnóstico Pré-Implantação , Adulto , Estudos de Coortes , Feminino , Haplótipos/genética , Humanos , Masculino , Repetições de Microssatélites/genética , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/epidemiologia , Distrofia Miotônica/genética , Gravidez , Resultado da Gravidez/epidemiologia , Resultado da Gravidez/genética
11.
Oncotarget ; 8(63): 106443-106453, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29290961

RESUMO

Hirschsprung disease (HSCR, OMIM 142623) is a pathology that shows a lack of enteric ganglia along of the distal gastrointestinal tract. This aganglionosis is attributed to an abnormal proliferation, migration, differentiation and/or survival of enteric precursor cells (EPCs) derived from neural crest cells (NCCs) during the enteric nervous system (ENS) embryogenesis. DNMT3b de novo methyltransferase is associated with NCCs development and has been shown to be implicated in ENS formation as well as in HSCR. In this study we have aimed to elucidate the specific mechanism underlying the DNMT3b role in such processes. We have performed the knockdown of Dnmt3b expression (Dnmt3b-KD) in enteric precursor cells (EPCs) to clarify its role on these cells in vitro. Moreover, we have analyzed several signaling pathways to determine the mechanisms responsible for the effect caused by Dnmt3b-KD in EPCs. Our results seem to support that Dnmt3b-KD promotes an increase EPCs proliferation that may be mediated by P53 and P21 activity, since both proteins were observed to be down-regulated in our Dnmt3b-KD cultures. Moreover, we observed a down-regulation of P53 and P21 in HSCR patients. These results lead us to propose that DNMT3b could be involved in HSCR through P53 and P21 activity.

12.
Sci Rep ; 6: 21160, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879676

RESUMO

Hirschsprung disease (HSCR) is attributed to a failure of neural crest derived cells to migrate, proliferate, differentiate or survive in the bowel wall during embryonic Enteric Nervous System (ENS) development. This process requires a wide and complex variety of molecules and signaling pathways which are activated by transcription factors. In an effort to better understand the etiology of HSCR, we have designed a study to identify new transcription factors participating in different stages of the colonization process. A differential expression study has been performed on a set of transcription factors using Neurosphere-like bodies from both HSCR and control patients. Differential expression levels were found for CDYL, MEIS1, STAT3 and PAX6. A significantly lower expression level for PAX6 in HSCR patients, would suit with the finding of an over-representation of the larger tandem (AC)m(AG)n repeats within the PAX6 promoter in HSCR patients, with the subsequent loss of protein P300 binding. Alternatively, PAX6 is a target for DNMT3B-dependant methylation, a process already proposed as a mechanism with a role in HSCR. Such decrease in PAX6 expression may influence in the proper function of signaling pathways involved in ENS with the confluence of additional genetic factors to the manifestation of HSCR phenotype.


Assuntos
Regulação da Expressão Gênica , Doença de Hirschsprung/genética , Fator de Transcrição PAX6/genética , Alelos , Estudos de Casos e Controles , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação para Baixo , Proteína p300 Associada a E1A/metabolismo , Sistema Nervoso Entérico , Feminino , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Repetições de Microssatélites , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA Metiltransferase 3B
13.
Biomed Res Int ; 2014: 560160, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24868528

RESUMO

Preimplantation genetic diagnosis (PGD) of genetic diseases, combined with HLA matching (PGD-HLA), is an option for couples at risk of transmitting a genetic disease to select unaffected embryos of an HLA tissue type compatible with that of an existing affected child. Here we present the results of our PGD-HLA program at the Department of Genetics, Reproduction and Fetal Medicine of the University Hospital Virgen del Rocío in Seville. Seven couples have participated in our program because of different indications. Overall, 26 cycles were performed, providing a total of 202 embryos. A conclusive molecular diagnosis and HLA-typing could be assured in 96% of the embryos. The percentage of transfers per cycle was 26.9% and the birth rate per cycle was 7.7% per transfer. Our PGD-HLA program resulted in the birth of 2 healthy babies, HLA-identical to their affected siblings, with successful subsequent haematopoietic stem cell (HSC) transplantations. Both HSC-transplanted children are currently doing well 48 and 21 months following transplantation, respectively. All the procedures, including HSCs umbilical cord transplantation, were performed in our hospital.


Assuntos
Antígenos HLA/genética , Teste de Histocompatibilidade/métodos , Diagnóstico Pré-Implantação/métodos , Biópsia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Feminino , Fertilização in vitro , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Recém-Nascido , Masculino , Biologia Molecular , Gravidez , Resultado da Gravidez , Reprodutibilidade dos Testes , Técnicas de Reprodução Assistida , Espanha
14.
Genet Med ; 16(9): 703-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24577265

RESUMO

PURPOSE: Hirschsprung disease (OMIM 142623) is a neurocristopathy attributed to a failure of cell proliferation or migration and/or failure of the enteric precursors along the gut to differentiate during embryonic development. Although some genes involved in this pathology are well characterized, many aspects remain poorly understood. In this study, we aimed to identify novel genes implicated in the pathogenesis of Hirschsprung disease. METHODS: We compared the expression patterns of genes involved in human stem cell pluripotency between enteric precursors from controls and Hirschsprung disease patients. We further evaluated the role of DNMT3B in the context of Hirschsprung disease by inmunocytochemistry, global DNA methylation assays, and mutational screening. RESULTS: Seven differentially expressed genes were identified. We focused on DNMT3B, which encodes a DNA methyltransferase that performs de novo DNA methylation during embryonic development. DNMT3B mutational analysis in our Hirschsprung disease series revealed the presence of potentially pathogenic mutations (p.Gly25Arg, p.Arg190Cys, and p.Gly198Trp). CONCLUSION: DNMT3B may be regulating enteric nervous system development through DNA methylation in the neural crest cells, suggesting that aberrant methylation patterns could have a relevant role in Hirschsprung disease. Moreover, the synergistic effect of mutations in both DNMT3B and other Hirschsprung disease-related genes may be contributing to a more severe phenotype in our Hirschsprung disease patients.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Sistema Nervoso Entérico , Doença de Hirschsprung/genética , Neurogênese/genética , Biomarcadores , Estudos de Casos e Controles , Pré-Escolar , Análise por Conglomerados , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Doença de Hirschsprung/metabolismo , Humanos , Lactente , Masculino , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , DNA Metiltransferase 3B
15.
PLoS One ; 8(1): e54043, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342068

RESUMO

Hirschsprung disease (HSCR) is a congenital malformation of the hindgut resulting from a disruption of neural crest cell migration during embryonic development. It has a complex genetic aetiology with several genes involved in its pathogenesis. PHOX2B plays a key function in the development of neural crest derivatives, and heterozygous mutations cause a complex dysautonomia associating HSCR, Congenital Central Hypoventilation Syndrome (CCHS) and neuroblastoma (NB) in various combinations. In order to determine the role of PHOX2B in isolated HSCR, we performed a mutational screening in a cohort of 207 Spanish HSCR patients. Our most relevant finding has been the identification of a de novo and novel deletion (c.393_410del18) in a patient with HSCR. Results of in silico and functional assays support its pathogenic effect related to HSCR. Therefore our results support that PHOX2B loss-of-function is a rare cause of HSCR phenotype.


Assuntos
Doença de Hirschsprung/genética , Doença de Hirschsprung/patologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Estudos de Casos e Controles , Biologia Computacional , Análise Mutacional de DNA , Feminino , Humanos , Masculino
16.
PLoS One ; 7(5): e36524, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22574178

RESUMO

Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology.


Assuntos
Variação Genética/genética , Doença de Hirschsprung/genética , Neuregulina-1/genética , Animais , Células COS , Chlorocebus aethiops , Análise Mutacional de DNA , Sistema Nervoso Entérico/metabolismo , Feminino , Frequência do Gene/genética , Haplótipos/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Proto-Oncogene Mas
17.
Genet Med ; 12(1): 39-43, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20009762

RESUMO

PURPOSE: Hirschsprung disease is characterized by the absence of intramural ganglion cells in the myenteric and submucosal plexuses within distal intestine, because of a fail in the enteric nervous system formations process. Endothelin-3-endothelin receptor B signaling pathway is known to play an essential role in this process. The aim of this study was to evaluate the implication of the EDN3 and EDNRB genes in a series of patients with Hirschsprung disease from Spain and determinate their mutational spectrum. METHODS: We performed the mutational screening of both genes in 196 patients with Hirschsprung disease using denaturing high-performance liquid chromatography technology. A case-control study using TaqMan Technology was also carried out to evaluate some common polymorphisms and haplotypes as susceptibility factors for Hirschsprung disease. RESULTS: Besides several novel mutations in both genes, we found a truncating mutation in an alternative isoform of EDNRB. Interestingly, we obtained an overrepresentation of a specific EDN3 haplotype in cases versus controls. CONCLUSIONS: Our results suggest that the isoform EDNRB Delta 3 might be playing an essential role in the formation of enteric nervous system. In addition, based on the haplotype distribution, EDN3 might be considered as a common susceptibility gene for sporadic Hirschsprung disease in a low-penetrance fashion.


Assuntos
Endotelina-3/genética , Doença de Hirschsprung/genética , Receptor de Endotelina B/genética , Estudos de Casos e Controles , Análise Mutacional de DNA , Síndrome de Down/complicações , Síndrome de Down/genética , Feminino , Mutação da Fase de Leitura , Variação Genética , Humanos , Masculino , Valores de Referência , Deleção de Sequência
18.
Mol Med Rep ; 2(2): 265-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21475823

RESUMO

Hirschsprung disease (HSCR) is defined by the absence of intramural ganglia of Meissner and Auerbach along variable lengths of the gastrointestinal tract. Intestinal neuronal dysplasia (IND) type B is characterized by the malformation of the parasympathetic submucous plexus of the gut. A connection appears to exist between these two enteric nervous system abnormalities. Due to the major role played by the RET proto-oncogene in HSCR, we sought to determine whether this gene was also related to INDB. dHPLC techniques were employed to screen the RET coding region in 23 patients presenting with INDB and 30 patients with a combined HSCR+INDB phenotype. In addition, eight RET single nucleotide polymorphisms (SNPs) were strategically selected and genotyped by TaqMan technology. The distribution of SNPs and haplotypes was compared among the different groups of patients (INDB, HSCR+INDB, HSCR) and the controls. We found several RET mutations in our patients and some differences in the distribution of the RET SNPs among the groups of study. Our results suggest an involvement of RET in the pathogenesis of intestinal INDB, although by different molecular mechanisms than those leading to HSCR. Further investigation is warranted to elucidate these precise mechanisms and to clarify the genetic nature of INDB.

19.
Int J Mol Med ; 17(4): 575-81, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16525712

RESUMO

Multiple endocrine neoplasia type 2 (MEN 2) is an autosomal dominant cancer syndrome, which is divided into three subtypes: MEN 2A, MEN 2B and familial medullary thyroid cancer (FMTC). Approximately 92% of MEN 2 cases are caused by mutations in exons 10, 11, 13-16 of the RET proto-oncogene. There exists inter- and intra-familial phenotypic variability among the MEN 2 families, even when the disease is caused by the same RET mutation, suggesting a role for genetic modifiers, such as polymorphisms/haplotypes. We have sought to determine the frequency and position of RET germline mutations in a cohort of 114 Spanish probands with any sign of MEN 2, and to search for putative modifier loci. Mutational screening of RET revealed 9 different mutations, present in 26 of the 114 probands (22.8%). In addition, distributions of 8 RET polymorphisms and the haplotypes comprising them, were studied in the context of the families positive for RET mutational screening, in order to evaluate them as genetic modifiers. The relationship between RET mutation type and presence of a polymorphism/haplotype was analyzed. The relationship between the presence of pheochromocytoma (PC) and/or hiperparathyroidism (HPT) in carriers of the same RET mutation, and the genotype for the specific variants was also studied. The results derived from those analyses revealed no associations of any variant/haplotype to a specific mutation or to the clinical presentation. Nevertheless, these observations do not permit us to exclude the possible role of other variants in RET or other related genes, in the final presentation of the disease.


Assuntos
Haplótipos , Neoplasia Endócrina Múltipla Tipo 2a/genética , Mutação , Polimorfismo Genético , Proteínas Proto-Oncogênicas c-ret/genética , Alelos , Carcinoma Medular/genética , Análise Mutacional de DNA , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Mutação em Linhagem Germinativa , Humanos , Masculino , Neoplasia Endócrina Múltipla Tipo 2b/genética , Proto-Oncogene Mas , Espanha , Neoplasias da Glândula Tireoide/genética
20.
AIDS Res Hum Retroviruses ; 19(5): 349-52, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12803993

RESUMO

The identification of genetic factors predisposing or protecting against HIV-1 infection has been an important aim in AIDS research. Two of these factors are located in the promoter region of the CCL5 gene, which encodes the RANTES (regulated on activation, normal T cells expressed and secreted) chemokine, an inhibitor agent for M-tropic HIV-1 strains. More specifically, the role of single-nucleotide polymorphisms (SNPs) -403G --> A and -28C --> G has been evaluated in the course of HIV-1 infection in several populations with different genetic, geographic, and ethnic backgrounds. Here we present a fast, simple, reliable, and efficient method for the simultaneous genotyping of these two CCL5 variants. A case-control study has been performed to evaluate the role of -403G --> A and -28C --> G as susceptibility factors for HIV-1 infection in the Spanish population. No differences have been found in the allelic frequencies of either variant or in the haplotype/genotype distribution between patients and controls. These data would be consistent with a lack of association between these SNPs and HIV-1 infection in our population.


Assuntos
Quimiocina CCL5/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Predisposição Genética para Doença , Infecções por HIV/genética , HIV-1 , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Frequência do Gene , Variação Genética , Infecções por HIV/virologia , Haplótipos , Humanos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA