Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 61(36): 13589-13602, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36123999

RESUMO

An extensive experimental campaign on Li recovery from relatively dilute LiCl solutions (i.e., Li+ ∼ 4000 ppm) is presented to identify the best operating conditions for a Li2CO3 crystallization unit. Lithium is currently mainly produced via solar evaporation, purification, and precipitation from highly concentrated Li brines located in a few world areas. The process requires large surfaces and long times (18-24 months) to concentrate Li+ up to 20,000 ppm. The present work investigates two separation routes to extract Li+ from synthetic solutions, mimicking those obtained from low-content Li+ sources through selective Li+ separation and further concentration steps: (i) addition of Na2CO3 solution and (ii) addition of NaOH solution + CO2 insufflation. A Li recovery up to 80% and purities up to 99% at 80 °C and with high-ionic strength solutions was achieved employing NaOH solution + CO2 insufflation and an ethanol washing step.

2.
J Environ Manage ; 314: 114984, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35430516

RESUMO

The European Union (EU) depends on third markets to supply many important raw materials. Increasing the circularity of critical raw materials within the EU is important not only from an environmental perspective, but also as a competitive advantage for the EU economy. In the case of boron, the EU's import dependency is about 100%. This work aims to evaluate the boron recovery from seawater desalination plants (SWDP) brines using ion-exchange resins in a circular economy approach. Commercial boron selective resins Purolite S108, DIAION CRB03 and CRB05 were tested and compared on batch and dynamic experiments. Thermodynamic and kinetic experiments were performed, and results were fitted by linear and non-linear models. After a comparison, results showed a good fit to the Langmuir isotherm and the pseudo-second order model, respectively, for all the commercial resins tested. The DIAION CRB03 resin presented higher sorption capacity and percentage of boron sorbed than the other resins and was selected as the best option for boron recovery from SWDP brine. Dynamic experiments in fixed bed column using DIAION CRB03 resulted in a sorption capacity of 13 mg/g of resin, a boron recovery of 98% and a concentration factor of 30, for an initial boron concentration of 50 mg/L. In addition, an economic analysis was carried out as a preliminary estimate of the revenues obtained from the production of boric acid from the brine produced by El Prat desalination plant.


Assuntos
Boro , Resinas de Troca Iônica , Adsorção , Concentração de Íons de Hidrogênio , Troca Iônica , Sais , Água do Mar
3.
Membranes (Basel) ; 11(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917903

RESUMO

For effective use of advanced engineering models of nanofiltration quality of experimental input is crucial, especially in electrolyte mixtures where simultaneous rejections of various ions may be very different. In particular, this concerns the quantitative control of concentration polarization (CP). This work used a rotating disklike membrane test cell with equally accessible membrane surface, so the CP extent was the same over the membrane surface. This condition, which is not satisfied in the conventional membrane test cell, made possible correcting for CP easily even in multi-ion systems. Ion rejections were studied experimentally for several dominant salts (NaCl, MgCl2, Na2SO4 and MgSO4) and trace ions (Na+, NH4+, Cl- and NO3-) using NF270 membrane. The solution-diffusion-electro-migration model was used to obtain ion permeances from the experimental measurements. The model could well fit the experimental data except in the case of NH4+. The correlations between the ion permeances and type of dominant salt are discussed in the context of the established mechanisms of NF such as Donnan and dielectric exclusion. The obtained information contributes to the systematic transport characterization of NF membranes and may be ultimately useful for computational fluid dynamics simulations of the performance of the membranes in various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA