Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 42(3): 431-449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34233551

RESUMO

The rapid development of nanomedicine has created a high demand for silver, copper and copper oxide nanoparticles. Due to their high reactivity and potent antimicrobial activity, silver and copper-based nanomaterials have been playing an important role in the search for new alternatives for the treatment of several issues of concern, such as pathologies caused by bacteria and viruses. Viral diseases are a significant and constant threat to public health. The most recent example is the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, the object of the present review is to highlight recent progress in the biomedical uses of these metal nanoparticles for the treatment and prevention of human viral infections. We discuss the antiviral activity of AgNPs and Cu-based NPs, including their actions against SARS-CoV-2. We also discuss the toxicity, biodistribution and excretion of AgNPs and CuNPs, along with their uses in medical devices or on inert surfaces to avoid viral dissemination by fomites. The challenges and limitations of the biomedical use of these nanoparticles are presented.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanopartículas Metálicas , Cobre , Humanos , Nanopartículas Metálicas/uso terapêutico , Óxidos , SARS-CoV-2 , Prata/farmacologia , Distribuição Tecidual
2.
Sci Total Environ ; 670: 1068-1074, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31018422

RESUMO

Copper nanoparticles (NCu) may co-exist with other pollutants in agricultural soils, such as pesticides. However, this has been little evaluated yet. Thus, possible effects of the simultaneous applications of pesticides and NCu on biogeochemical cycles are expected, for example on the nitrogen cycle. Therefore, the aim of this work was to evaluate the effect of simultaneous application of the herbicide atrazine (ATZ) and NCu on the abundance of total bacteria and nitrifying communities: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Moreover, the ATZ dissipation was evaluated. A soil-plant system containing ATZ at field dose (3 mg a.i. kg-1) was mixed with two doses of NCu (0.05% or 0.15% w/w). Changes in the abundance of 16S rRNA and ammonia monooxygenase (amoA) genes of AOA and AOB were evaluated by real-time quantitative PCR (qPCR) at three sampling times (1, 15 and 30 days). The residual ATZ and nitrate production were also measured. The results showed significant differences in microbial composition and abundance over the 30 days of the experiment. Particularly, an initial decrease was observed in total bacterial abundance due to the presence of ATZ and NCu respect to ATZ alone (~60%). The abundance of AOA was also remarkably reduced (~85%), but these communities gradually recovered towards the end of the experiment. Conversely, AOB abundance initially increased (>100%) and remained mainly unaltered in soil exposed to ATZ and NCu 0.15% w/w, where nitrate formation was also constant. Moreover, NCu decreased the ATZ dissipation, which was translated in a 2-fold increase on the ATZ half-life values (T1/2). This study demonstrates that the simultaneous presence of NCu and ATZ may represent a risk for the total bacteria present in soil and sensitive microorganisms such as nitrifying communities, and changes in the dissipation of the pesticide could influence this process.


Assuntos
Archaea/fisiologia , Atrazina/efeitos adversos , Fenômenos Fisiológicos Bacterianos , Cobre/efeitos adversos , Herbicidas/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Poluentes do Solo/efeitos adversos , Genes Bacterianos , Ciclo do Nitrogênio , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Microbiologia do Solo
3.
Crit Rev Biotechnol ; 39(2): 157-172, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30396282

RESUMO

Metal nanoparticles and metal oxides nanoparticles (MNPs/MONPs) have been widely included in a great diversity of products and industrial applications and they are already a part of our everyday life. According to estimation studies, their production is expected to increase exponentially in the next few years. Consequently, soil has been suggested as the main sink of MNPs/MONPs once they are deliberately or accidentally released into the environment. The potential negative perturbations that may result on soil microbial communities and ecological processes are resulting in concerns. Several nano-toxicological studies of MNPs/MONPs, reported so far, have focused on aquatic organisms, animals, and soil invertebrates. However, during recent years, the studies have been oriented to understand the effects of MNPs/MONPs on microbial communities and their interaction with soil components. The studies have suggested that MNPs/MONPs are one of the most toxic type to soil biota, amongst different types of nanomaterials. This may threaten soil health and fertility, since microbial communities are known to support important biological processes and ecosystem services such as the nutrient cycling, whereby their protection against the environmental pollution is imperative. Therefore, in this review we summarize the actual knowledge available from the last five years (2013-2018) and gaps about the potential negative, positive or neutral effects produced on soil by different classes of MNPs/MONPs. A particular emphasis has been placed on the associated soil microorganisms and biological processes. Finally, perspectives about future research are discussed.


Assuntos
Nanopartículas Metálicas , Metais , Óxidos , Microbiologia do Solo , Poluentes do Solo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Metais/química , Metais/toxicidade , Microbiota , Nanotecnologia , Óxidos/química , Óxidos/toxicidade , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA