Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(9): e0002923, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37555681

RESUMO

Clostridium scindens strain VPI12708 serves as model organism to study bile acid 7α-dehydroxylating pathways. The closed circular genome of C. scindens VPI12708 was obtained by PacBio sequencing. The genome is composed of 3,983,052 bp, with 47.59% G + C, and 3,707 coding DNA sequences are predicted.

2.
ACS Omega ; 8(8): 7302-7318, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873006

RESUMO

ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation. In this sense, and based on the apparent inconsistency between structural and functional studies, we propose to apply biophysical approaches based on elastic network models (ENM) to study the intrinsic dynamics of the theoretically most probable hydrolysis mechanism. The proposed models ENM suggest that the ClpP region is decisive for the stabilization of the ClpXP complex, contributing to the flexibility of the residues adjacent to the pore, favoring the increase in pore size and, therefore, with the energy of interaction of its residues with a larger portion of the substrate. It is predicted that the complex may undergo a stable configurational change once assembled and that the deformability of the system once assembled is oriented, to increase the rigidity of the domains of each region (ClpP and ClpX) and to gain flexibility of the pore. Our predictions could suggest under the conditions of this study the mechanism of the interaction of the system, of which the substrate passes through the unfolding of the pore in parallel with a folding of the bottleneck. The variations in the distance calculated by molecular dynamics could allow the passage of a substrate with a size equivalent to ∼3 residues. The theoretical behavior of the pore and the stability and energy of binding to the substrate based on ENM models suggest that in this system, there are thermodynamic, structural, and configurational conditions that allow a possible translocation mechanism that is not strictly sequential.

3.
J Mol Liq ; 340: 117284, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34421159

RESUMO

The COVID-19 pandemic has accelerated the study of the potential of multi-target drugs (MTDs). The mixture of homologues called ivermectin (avermectin-B1a + avermectin-B1b) has been shown to be a MTD with potential antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the effect of each homologue on the flexibility and stiffness of proteins associated with COVID-19, described as ivermectin targets. We observed that each homologue was stably bound to the proteins studied and was able to induce detectable changes with Elastic Network Models (ENM). The perturbations induced by each homologue were characteristic of each compound and, in turn, were represented by a disruption of native intramolecular networks (interactions between residues). The homologues were able to slightly modify the conformation and stability of the connection points between the Cα atoms of the residues that make up the structural network of proteins (nodes), compared to free proteins. Each homologue was able to modified differently the distribution of quasi-rigid regions of the proteins, which could theoretically alter their biological activities. These results could provide a biophysical-computational view of the potential MTD mechanism that has been reported for ivermectin.

4.
Biophys Chem ; 278: 106677, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428682

RESUMO

The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Ivermectina/análogos & derivados , alfa Carioferinas/antagonistas & inibidores , beta Carioferinas/antagonistas & inibidores , Animais , Antivirais/farmacologia , Sítios de Ligação , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Humanos , Ivermectina/química , Ivermectina/farmacologia , Cinética , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Termodinâmica , alfa Carioferinas/química , alfa Carioferinas/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA