Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 223(1): 47-61, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28702736

RESUMO

Lasting modifications of sensory input induce structural and functional changes in the brain, but the involvement of primary sensory neurons in this plasticity has been practically ignored. Here, we examine qualitatively and quantitatively the central axonal terminations of a population of trigeminal ganglion neurons, whose peripheral axons innervate a single mystacial vibrissa. Vibrissa follicles are heavily innervated by myelinated and unmyelinated fibers that exit the follicle mainly through a single deep vibrissal nerve. We made intraneural injections of a mixture of cholera-toxin B (CTB) and isolectin B4, tracers for myelinated and unmyelinated fibers, respectively, in three groups of young adult rats: controls, animals subjected to chronic haptic touch deprivation by unilateral whisker trimming, and rats exposed for 2 months to environmental enrichment. The regional and laminar pattern of terminal arborizations in the trigeminal nuclei of the brain stem did not show gross changes after sensory input modification. However, there were significant and widespread increases in the number and size of CTB-labeled varicosities in the enriched condition, and a prominent expansion in both parameters in laminae III-IV of the caudal division of the spinal nucleus in the whisker trimming condition. No obvious changes were detected in IB4-labeled terminals in laminae I-II. These results show that a prolonged exposure to changes in sensory input without any neural damage is capable of inducing structural changes in terminals of primary afferents in mature animals, and highlight the importance of peripheral structures as the presumed earliest players in sensory experience-dependent plasticity.


Assuntos
Axônios/fisiologia , Meio Ambiente , Privação Sensorial , Tato/fisiologia , Núcleos do Trigêmeo/fisiologia , Vibrissas/inervação , Animais , Axônios/ultraestrutura , Toxina da Cólera/metabolismo , Lectinas/metabolismo , Masculino , Microscopia Confocal , Microscopia Eletrônica , Neurônios Aferentes/fisiologia , Neurônios Aferentes/ultraestrutura , Neurópilo/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos do Trigêmeo/metabolismo , Núcleos do Trigêmeo/ultraestrutura
2.
Int J Mol Sci ; 19(1)2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29280965

RESUMO

Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.


Assuntos
Gânglios Sensitivos/fisiologia , Ácido Glutâmico/metabolismo , Plasticidade Neuronal , Células Receptoras Sensoriais/metabolismo , Animais , Humanos , Ácido Caínico/metabolismo , N-Metilaspartato/metabolismo , Neuralgia/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
3.
Front Mol Neurosci ; 9: 132, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965535

RESUMO

Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites, and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left-right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity.

4.
J Alzheimers Dis ; 45(1): 1-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25428250

RESUMO

Tauopathies, such as Alzheimer's disease (AD) and Frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), are characterized by tau accumulation. This accumulation could result from alterations in tau degradation by either the ubiquitin-proteasome system or the autophagy-lysosomal pathway. To analyze a possible alteration of the autophagy-lysosomal pathway in transgenic mice expressing human tau with three FTDP-17 missense mutations (TauVLW mice), we studied the lysosomal enzyme Cathepsin D. The hippocampi of TauVLW mice, where the human mutant tau accumulates, showed both increased Cathepsin D and partial colocalization of Cathepsin D with human mutant tau. At the ultrastructural level, some multivesicular bodies showed human mutant tau-immunopositive vesicles. This finding could provide insights into the molecular mechanisms of tau degradation in human tauopathies.


Assuntos
Catepsina D/metabolismo , Cromossomos Humanos Par 17/genética , Demência Frontotemporal/genética , Regulação Enzimológica da Expressão Gênica/genética , Hipocampo/enzimologia , Fatores Etários , Animais , Modelos Animais de Doenças , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA