Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674771

RESUMO

This report describes acidic microbial mats containing cyanobacteria that are strongly associated to precipitated minerals in the source area of Río Tinto. Río Tinto (Huelva, Southwestern Spain) is an extreme acidic environment where iron and sulfur cycles play a fundamental role in sustaining the extremely low pH and the high concentration of heavy metals, while maintaining a high level of microbial diversity. These multi-layered mineral deposits are stable all year round and are characterized by a succession of thick greenish-blue and brownish layers mainly composed of natrojarosite. The temperature and absorbance above and below the mineral precipitates were followed and stable conditions were detected inside the mineral precipitates. Different methodologies, scanning and transmission electron microscopy, immunological detection, fluorescence in situ hybridization, and metagenomic analysis were used to describe the biodiversity existing in these microbial mats, demonstrating, for the first time, the existence of acid-tolerant cyanobacteria in a hyperacidic environment of below pH 1. Up to 0.46% of the classified sequences belong to cyanobacterial microorganisms, and 1.47% of the aligned DNA reads belong to the Cyanobacteria clade.

2.
Nat Commun ; 14(1): 808, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810853

RESUMO

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia/métodos , Fósseis , Limite de Detecção , Filogenia
3.
Sci Rep ; 12(1): 5640, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379897

RESUMO

In this work, we have analyzed natural samples collected at three hydrothermal areas of Iceland by Raman spectroscopy. The studied high-latitude regions are considered environmentally and mineralogically appropriate Martian analogues since they are rich in weathered basalts that have been altered by hydrothermalism to mineral phases such as silica, clay minerals, sulfates, oxides, and sulfur. The main objective of this work was to assess the relation of the spectroscopic signatures of alteration to hydrothermal processes and biomediation, considering previous studies focused on the detection of lipid biomarkers in the same samples. The recorded Raman spectra, taken with optical parameters similar to the ExoMars 2022 Raman spectrometer, showed structural modifications in all secondary minerals in the form of peak shifts (in the case of sulfur and clay minerals), changes in the relative ratio intensity (in anatase) and/or shape broadening (in sulfates and hematite). These results reveal the suitability of Raman spectroscopy to examine areas rich in water-altered minerals, where a mixture of crystalline and amorphous phases can co-exist. The detection of silica is singularly interesting since, on the one hand, it can imply the past existence of hydrothermal hot springs rich in nutrient and redox gradients and, on the other hand, provides excellent matrix for biosignature preservation. The data can be helpful as an astrobiological database for the forthcoming missions to Mars, where potential upwelling groundwater systems could have altered the mineral phases in a similar way to that observed in this work.


Assuntos
Marte , Meio Ambiente Extraterreno/química , Islândia , Minerais/química , Análise Espectral Raman/métodos
4.
Sci Rep ; 10(1): 21196, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273669

RESUMO

Detecting signs of potential extant/extinct life on Mars is challenging because the presence of organics on that planet is expected to be very low and most likely linked to radiation-protected refugia and/or preservative strategies (e.g., organo-mineral complexes). With scarcity of organics, accounting for biomineralization and potential relationships between biomarkers, mineralogy, and geochemistry is key in the search for extraterrestrial life. Here we explored microbial fingerprints and their associated mineralogy in Icelandic hydrothermal systems analog to Mars (i.e., high sulfur content, or amorphous silica), to identify potentially habitable locations on that planet. The mineralogical assemblage of four hydrothermal substrates (hot springs biofilms, mud pots, and steaming and inactive fumaroles) was analyzed concerning the distribution of biomarkers. Molecular and isotopic composition of lipids revealed quantitative and compositional differences apparently impacted by surface geothermal alteration and environmental factors. pH and water showed an influence (i.e., greatest biomass in circumneutral settings with highest supply and turnover of water), whereas temperature conditioned the mineralogy that supported specific microbial metabolisms related with sulfur. Raman spectra suggested the possible coexistence of abiotic and biomediated sources of minerals (i.e., sulfur or hematite). These findings may help to interpret future Raman or GC-MS signals in forthcoming Martian missions.

5.
Sci Rep ; 10(1): 19183, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154541

RESUMO

The modern Martian surface is unlikely to be habitable due to its extreme aridity among other environmental factors. This is the reason why the hyperarid core of the Atacama Desert has been studied as an analog for the habitability of Mars for more than 50 years. Here we report a layer enriched in smectites located just 30 cm below the surface of the hyperarid core of the Atacama. We discovered the clay-rich layer to be wet (a phenomenon never observed before in this region), keeping a high and constant relative humidity of 78% (aw 0.780), and completely isolated from the changing and extremely dry subaerial conditions characteristic of the Atacama. The smectite-rich layer is inhabited by at least 30 halophilic species of metabolically active bacteria and archaea, unveiling a previously unreported habitat for microbial life under the surface of the driest place on Earth. The discovery of a diverse microbial community in smectite-rich subsurface layers in the hyperarid core of the Atacama, and the collection of biosignatures we have identified within the clays, suggest that similar shallow clay deposits on Mars may contain biosignatures easily reachable by current rovers and landers.


Assuntos
Bactérias/isolamento & purificação , Clima Desértico , Meio Ambiente Extraterreno , Silicatos , Microbiologia do Solo , Água
6.
Sci Rep ; 10(1): 15097, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934272

RESUMO

The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compounds against the harsh surface conditions of Mars. Here, we evaluate whether the capacity of smectites to preserve organic compounds can be influenced by a short exposure to different diagenetic fluids. We analyzed the stability of glycine embedded within nontronite samples previously exposed to either acidic or alkaline fluids (hereafter referred to as "treated nontronites") under Mars-like surface conditions. Analyses performed using multiple techniques showed higher photodegradation of glycine in the acid-treated nontronite, triggered by decarboxylation and deamination processes. In constrast, our experiments showed that glycine molecules were preferably incorporated by ion exchange in the interlayer region of the alkali-treated nontronite, conferring them a better protection against the external conditions. Our results demonstrate that smectite previously exposed to fluids with different pH values influences how glycine is adsorbed into their interlayer regions, affecting their potential for preservation of organic compounds under contemporary Mars surface conditions.

8.
Sci Rep ; 9(1): 11024, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439858

RESUMO

Here we inspect whether microbial life may disperse using dust transported by wind in the Atacama Desert in northern Chile, a well-known Mars analog model. By setting a simple experiment across the hyperarid core of the Atacama we found that a number of viable bacteria and fungi are in fact able to traverse the driest and most UV irradiated desert on Earth unscathed using wind-transported dust, particularly in the later afternoon hours. This finding suggests that microbial life on Mars, extant or past, may have similarly benefited from aeolian transport to move across the planet and find suitable habitats to thrive and evolve.


Assuntos
Bactérias , Poeira , Fungos , Vento , Bactérias/genética , Chile , Clima Desértico , Exobiologia , Fungos/genética , Marte , Modelos Teóricos , Movimento , Oceanos e Mares , Fotoperíodo , RNA Ribossômico/genética , Microbiologia do Solo , Fatores de Tempo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA