Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Crohns Colitis ; 17(6): 919-932, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36694402

RESUMO

Biomarkers to guide clinical decision making at diagnosis of inflammatory bowel disease [IBD] are urgently needed. We investigated a composite serum N-glycomic biomarker to predict future disease course in a discovery cohort of 244 newly diagnosed IBD patients. In all, 47 individual glycan peaks were analysed using ultra-high performance liquid chromatography, identifying 105 glycoforms from which 24 derived glycan traits were calculated. Multivariable logistic regression was performed to determine associations of derived glycan traits with disease. Cox proportional hazard models were used to predict treatment escalation from first-line treatment to biologics or surgery (hazard ratio [HR] 25.9, p = 1.1 × 10-12; 95% confidence interval [CI], 8.52-78.78). Application to an independent replication cohort of 54 IBD patients yielded an HR of 5.1 [p = 1.1 × 10-5; 95% CI, 2.54-10.1]. These data demonstrate the prognostic capacity of serum N-glycan biomarkers and represent a step towards personalised medicine in IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/diagnóstico , Doença de Crohn/complicações , Glicômica , Doenças Inflamatórias Intestinais/complicações , Biomarcadores , Polissacarídeos
2.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242110

RESUMO

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas Sanguíneas/análise , Glicômica/métodos , Complicações na Gravidez/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Bioinformatics ; 34(18): 3231-3232, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29897488

RESUMO

Summary: GlycoStore is a curated chromatographic, electrophoretic and mass-spectrometry composition database of N-, O-, glycosphingolipid (GSL) glycans and free oligosaccharides associated with a range of glycoproteins, glycolipids and biotherapeutics. The database is built on publicly available experimental datasets from GlycoBase developed in the Oxford Glycobiology Institute and then the National Institute for Bioprocessing Research and Training (NIBRT). It has now been extended to include recently published and in-house data collections from the Bioprocessing Technology Institute (BTI) A*STAR, Macquarie University and Ludger Ltd. GlycoStore provides access to approximately 850 unique glycan structure entries supported by over 8500 retention positions determined by: (i) hydrophilic interaction chromatography (HILIC) ultra-high performance liquid chromatography (U/HPLC) and reversed phase (RP)-U/HPLC with fluorescent detection; (ii) porous graphitized carbon (PGC) chromatography in combination with ESI-MS/MS detection; and (iii) capillary electrophoresis with laser induced fluorescence detection (CE-LIF). GlycoStore enhances many features previously available in GlycoBase while addressing the limitations of the data collections and model of this popular resource. GlycoStore aims to support detailed glycan analysis by providing a resource that underpins current workflows. It will be regularly updated by expert annotation of published data and data obtained from the project partners. Availability and implementation: http://www.glycostore.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Compostos Químicos , Glicômica/métodos , Oligossacarídeos/química , Polissacarídeos/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Glicolipídeos , Glicoproteínas , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem
4.
Glycoconj J ; 35(3): 311-321, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29909447

RESUMO

Glycosylation is considered one of the most complex and structurally diverse post-translational modifications of proteins. Glycans play important roles in many biological processes such as protein folding, regulation of protein stability, solubility and serum half-life. One of the ways to study glycosylation is systematic structural characterizations of protein glycosylation utilizing glycomics methodology based around mass spectrometry (MS). The most prevalent bottleneck stages for glycomic analyses is laborious sample preparation steps. Therefore, in this study, we aim to improve sample preparations by automation. We recently demonstrated the successful application of an automated high-throughput (HT), glycan permethylation protocol based on 96-well microplates, in the analysis of purified glycoproteins. Therefore, we wanted to test if these developed HT methodologies could be applied to more complex biological starting materials. Our automated 96-well-plate based permethylation method showed very comparable results with established glycomic methodology. Very similar glycomic profiles were obtained for complex glycoprotein/protein mixtures derived from heterogeneous mouse tissues. Automated N-glycan release, enrichment and automated permethylation of samples proved to be convenient, robust and reliable. Therefore we conclude that these automated procedures are a step forward towards the development of a fully automated, fast and reliable glycomic profiling system for analysis of complex biological materials.


Assuntos
Automação Laboratorial/métodos , Glicômica/métodos , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Fracionamento Celular/métodos , Rim/química , Fígado/química , Camundongos , Camundongos Endogâmicos C57BL
5.
Anal Chem ; 89(12): 6455-6462, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28509534

RESUMO

Erythropoietin (EPO) is one of the main therapeutics used to treat anemic patients, greatly improving their quality of life. In this study, biosimilars Binocrit and a development product, called here CIGB-EPO, were compared to the originator product, Eprex. All three are epoetin alpha products, reputed to have similar glycosylation profiles. The quality, safety, and efficacy of this biotherapeutic depend on the following glycosylation critical quality attributes (GCQAs): sialylation, N-glycolyl-neuraminic acid (Neu5Gc) content, branching, N-acetyl-lactosamine (LacNAc) extensions, and O-acetylation pattern. Reverse-phase ultra-high-pressure liquid chromatography (RP-UHPLC) analysis of acid-released, 1,2-diamino-4,5-methylenedioxybenzene (DMB) labeled sialic acid derivatives and hydrophilic interaction liquid chromatography (HILIC) in combination with mass spectrometry (HILIC-UHPLC-MS) of procainamide (PROC) labeled N-glycans were the analytical tools used. An automated method for enzymatic release and PROC labeling was applied for the first time to the erythropoiesis stimulating agent (ESA) products, which facilitated novel, in-depth characterization, and allowed identification of precise structural features including the location of O-acetyl groups on sialic acid (SA) moieties. Samples were digested by a sialate-O-acetylesterase (NanS) to confirm the presence of O-acetyl groups. It was found that Eprex contained the greatest relative abundance of O-acetylated derivatives, Binocrit expressed the least Neu5Gc, and CIGB-EPO showed the greatest variety of high-mannose-phosphate structures. The sialylation and LacNAc extension patterns of the three ESAs were similar, with a maximum of four N-acetyl-neuraminic acid (Neu5Ac) moieties detected per glycan. Such differences in SA derivatization, particularly O-acetylation, could have consequences for the quality and safety of a biotherapeutic, as well as its efficacy.

6.
PLoS One ; 11(9): e0162824, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610614

RESUMO

The study of saliva O-glycosylation is receiving increasing attention due to the potential of glycans for disease biomarkers, but also due to easy access and non-invasive collection of saliva as biological fluid. Saliva is rich in glycoproteins which are secreted from the bloodstream or produced by salivary glands. Mucins, which are highly O-glycosylated proteins, are particularly abundant in human saliva. Their glycosylation is associated with blood group and secretor status, and represents a reservoir of potential disease biomarkers. This study aims to analyse and compare O-glycans released from whole human mouth saliva collected 3 times a day from a healthy individual over a 5 days period. O-linked glycans were released by hydrazinolysis, labelled with procainamide and analysed by ultra-high performance liquid chromatography with fluorescence detection (UHPLC-FLR) coupled to electrospray ionization mass spectrometry (ESI-MS/MS). The sample preparation method showed excellent reproducibility and can therefore be used for biomarker discovery. Our data demonstrates that the O-glycosylation in human saliva changes significantly during the day. These changes may be related to changes in the salivary concentrations of specific proteins.


Assuntos
Metaboloma , Polissacarídeos/metabolismo , Saliva/metabolismo , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Fetuínas/metabolismo , Glicosilação , Humanos , Estudos Longitudinais , Espectrometria de Massas , Procainamida/química , Padrões de Referência , Reprodutibilidade dos Testes , Coloração e Rotulagem
7.
Anal Chem ; 88(17): 8562-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27479043

RESUMO

Monitoring glycoprotein therapeutics for changes in glycosylation throughout the drug's life cycle is vital, as glycans significantly modulate the stability, biological activity, serum half-life, safety, and immunogenicity. Biopharma companies are increasingly adopting Quality by Design (QbD) frameworks for measuring, optimizing, and controlling drug glycosylation. Permethylation of glycans prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a valuable tool for glycan characterization and for screening of large numbers of samples in QbD drug realization. However, the existing protocols for manual permethylation and liquid-liquid extraction (LLE) steps are labor intensive and are thus not practical for high-throughput (HT) studies. Here we present a glycan permethylation protocol, based on 96-well microplates, that has been developed into a kit suitable for HT work. The workflow is largely automated using a liquid handling robot and includes N-glycan release, enrichment of N-glycans, permethylation, and LLE. The kit has been validated according to industry analytical performance guidelines and applied to characterize biopharmaceutical samples, including IgG4 monoclonal antibodies (mAbs) and recombinant human erythropoietin (rhEPO). The HT permethylation enabled glycan characterization and relative quantitation with minimal side reactions: the MALDI-TOF-MS profiles obtained were in good agreement with hydrophilic liquid interaction chromatography (HILIC) and ultrahigh performance liquid chromatography (UHPLC) data. Automated permethylation and extraction of 96 glycan samples was achieved in less than 5 h and automated data acquisition on MALDI-TOF-MS took on average less than 1 min per sample. This automated and HT glycan preparation and permethylation showed to be convenient, fast, and reliable and can be applied for drug glycan profiling and clinical glycan biomarker studies.


Assuntos
Anticorpos Monoclonais/análise , Automação , Produtos Biológicos/análise , Eritropoetina/análise , Ensaios de Triagem em Larga Escala , Imunoglobulina G/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glicosilação , Metilação , Proteínas Recombinantes/análise
8.
Sci Rep ; 6: 27955, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302155

RESUMO

Immunoglobulin A (IgA) is a glycoprotein of which altered glycosylation has been associated with several pathologies. Conventional methods for IgA N- and O-glycosylation analysis are tedious, thus limiting such analyses to small sample sizes. Here we present a high-throughput strategy for the simultaneous analysis of serum-derived IgA1 N- and O-glycopeptides using matrix-assisted laser/desorption ionisation Fourier transform ion cyclotron resonance (MALDI-FTICR) mass spectrometry (MS). Six non-fucosylated diantennary complex type glycoforms were detected on the Asn144-containing glycopeptide. Thirteen distinct glycoforms were identified for the Asn340-containing tailpiece glycopeptide, mainly of the diantennary complex type, and low amounts of triantennary glycoforms. Simultaneously with these N-glycopeptides, 53 compositional glycoforms of the hinge region O-glycopeptide were profiled in a single high resolution MALDI-FTICR spectrum. Since many pregnancy associated changes have been recognized for immunoglobulin G, we sought to demonstrate the clinical applicability of this method in a cohort of 29 pregnant women, from whom samples were collected at three time points during pregnancy and three time points after delivery. Pregnancy associated changes of N-glycan bisection were different for IgA1 as compared to IgG-Fc described earlier. We foresee further applications of the developed method for larger patient cohorts to study IgA N- and O-glycosylation changes in pathologies.


Assuntos
Glicosilação , Imunoglobulina A/química , Fatores Imunológicos/química , Polissacarídeos/análise , Feminino , Humanos , Imunoglobulina A/sangue , Fatores Imunológicos/sangue , Estudos Longitudinais , Gravidez , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Anal Biochem ; 486: 38-40, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26079702

RESUMO

One of the most widely used methods for glycan analysis is fluorescent labeling of released glycans followed by hydrophilic interaction chromatography-(ultra-)high-performance liquid chromatography [HILIC-(U)HPLC]. Here, we compare the data obtained by (U)HPLC-fluorescence (FLR) coupled to electrospray ionization-mass spectrometry (ESI-MS) for procainamide and 2-aminobenzamide (2-AB)-labeled N-glycans released from human immunoglobulin G (IgG). Fluorescence profiles from procainamide show comparable chromatographic separation to those obtained for 2-AB but gave higher fluorescence intensity as well as significantly improved ESI efficiency (up to 30 times that of 2-AB). Thus, labeling with procainamide increases the ability to identify minor glycan species that may have significant biological activity.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Corantes Fluorescentes/química , Polissacarídeos/análise , Polissacarídeos/química , Procainamida/química , Espectrometria de Massas por Ionização por Electrospray/métodos , ortoaminobenzoatos/química , Humanos , Espectrometria de Fluorescência , Coloração e Rotulagem
11.
PLoS One ; 10(4): e0123028, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25831126

RESUMO

INTRODUCTION: Serum N-glycans have been identified as putative biomarkers for numerous diseases. The impact of different serum sample tubes and processing methods on N-glycan analysis has received relatively little attention. This study aimed to determine the effect of different sample tubes and processing methods on the whole serum N-glycan profile in both health and disease. A secondary objective was to describe a robot automated N-glycan release, labeling and cleanup process for use in a biomarker discovery system. METHODS: 25 patients with active and quiescent inflammatory bowel disease and controls had three different serum sample tubes taken at the same draw. Two different processing methods were used for three types of tube (with and without gel-separation medium). Samples were randomised and processed in a blinded fashion. Whole serum N-glycan release, 2-aminobenzamide labeling and cleanup was automated using a Hamilton Microlab STARlet Liquid Handling robot. Samples were analysed using a hydrophilic interaction liquid chromatography/ethylene bridged hybrid(BEH) column on an ultra-high performance liquid chromatography instrument. Data were analysed quantitatively by pairwise correlation and hierarchical clustering using the area under each chromatogram peak. Qualitatively, a blinded assessor attempted to match chromatograms to each individual. RESULTS: There was small intra-individual variation in serum N-glycan profiles from samples collected using different sample processing methods. Intra-individual correlation coefficients were between 0.99 and 1. Unsupervised hierarchical clustering and principal coordinate analyses accurately matched samples from the same individual. Qualitative analysis demonstrated good chromatogram overlay and a blinded assessor was able to accurately match individuals based on chromatogram profile, regardless of disease status. CONCLUSIONS: The three different serum sample tubes processed using the described methods cause minimal inter-individual variation in serum whole N-glycan profile when processed using an automated workstream. This has important implications for N-glycan biomarker discovery studies using different serum processing standard operating procedures.


Assuntos
Coleta de Amostras Sanguíneas/instrumentação , Glicoproteínas/sangue , Polissacarídeos/sangue , Adulto , Biomarcadores/sangue , Análise Química do Sangue , Proteínas Sanguíneas/isolamento & purificação , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Feminino , Glicoproteínas/isolamento & purificação , Humanos , Doenças Inflamatórias Intestinais/sangue , Masculino , Pessoa de Meia-Idade , Polissacarídeos/isolamento & purificação
12.
Chromatographia ; 78(5-6): 321-333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814696

RESUMO

This review covers advances in analytical technologies for high-throughput (HTP) glycomics. Our focus is on structural studies of glycoprotein glycosylation to support biopharmaceutical realization and the discovery of glycan biomarkers for human disease. For biopharmaceuticals, there is increasing use of glycomics in Quality by Design studies to help optimize glycan profiles of drugs with a view to improving their clinical performance. Glycomics is also used in comparability studies to ensure consistency of glycosylation both throughout product development and between biosimilars and innovator drugs. In clinical studies there is as well an expanding interest in the use of glycomics-for example in Genome Wide Association Studies-to follow changes in glycosylation patterns of biological tissues and fluids with the progress of certain diseases. These include cancers, neurodegenerative disorders and inflammatory conditions. Despite rising activity in this field, there are significant challenges in performing large scale glycomics studies. The requirement is accurate identification and quantitation of individual glycan structures. However, glycoconjugate samples are often very complex and heterogeneous and contain many diverse branched glycan structures. In this article we cover HTP sample preparation and derivatization methods, sample purification, robotization, optimized glycan profiling by UHPLC, MS and multiplexed CE, as well as hyphenated techniques and automated data analysis tools. Throughout, we summarize the advantages and challenges with each of these technologies. The issues considered include reliability of the methods for glycan identification and quantitation, sample throughput, labor intensity, and affordability for large sample numbers.

13.
Anal Biochem ; 453: 29-37, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24613257

RESUMO

The study of protein O-glycosylation is receiving increasing attention in biological, medical, and biopharmaceutical research. Improved techniques are required to allow reproducible and quantitative analysis of O-glycans. An established approach for O-glycan analysis relies on their chemical release in high yield by hydrazinolysis, followed by fluorescent labeling at the reducing terminus and high-performance liquid chromatography (HPLC) profiling. However, an unwanted degradation known as "peeling" often compromises hydrazinolysis for O-glycan analysis. Here we addressed this problem using low-molarity solutions of ethylenediaminetetraacetic acid (EDTA) in hydrazine for O-glycan release. O-linked glycans from a range of different glycoproteins were analyzed, including bovine fetuin, bovine submaxillary gland mucin, and serum immunoglobulin A (IgA). The data for the O-glycans released by hydrazine with anhydrous EDTA or disodium salt dihydrate EDTA show high yields of the native O-glycans compared with the peeled product, resulting in a markedly increased robustness of the O-glycan profiling method. The presented method for O-glycan release demonstrates significant reduction in peeling and reduces the number of sample handling steps prior to release.


Assuntos
Ácido Edético/química , Hidrazinas/química , Polissacarídeos/química , Cromatografia Líquida de Alta Pressão
14.
Biol Chem ; 393(8): 687-708, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22944673

RESUMO

This review provides an overview on the methods available for analysis of O-glycosylation. Three major themes are addressed: analysis of released O-glycans including different O-glycan liberation, derivatization, and detection methods; analysis of formerly O-glycosylated peptides yielding information on O-glycan attachment sites; analysis of O-glycopeptides, representing by far the most informative but also most challenging approach for O-glycan analysis. Although there are various techniques available for the identification of O-linked oligosaccharides, the focus here is on MS fragmentation techniques such as collision-induced fragmentation, electron capture dissociation, and electron transfer dissociation. Finally, the O-glycan analytical challenges that need to be met will be discussed.


Assuntos
Glicopeptídeos/química , Glicoproteínas/química , Espectrometria de Massas/métodos , Polissacarídeos/análise , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Glicosilação , Humanos , Dados de Sequência Molecular
15.
Anal Biochem ; 423(1): 119-28, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22306471

RESUMO

The analysis of O-glycans is essential for better understanding their functions in biological processes. Although many techniques for O-glycan release have been developed, the hydrazinolysis release method is the best for producing O-glycans with free reducing termini in high yield. This release technique allows the glycans to be labeled with a fluorophore and analyzed by fluorescence detection. Under the hydrazinolysis release conditions, a side reaction is observed and causes the loss of monosaccharides from the reducing terminus of the glycans (known as peeling). Using bovine fetuin (because it contains the sialylated O-glycans most commonly found on biopharmaceuticals) and bovine submaxillary gland mucin (BSM), here we demonstrate that peeling can be greatly reduced when the sample is buffer exchanged prior to hydrazinolysis with solutions of either 0.1% trifluoroacetic acid (TFA) or low-molarity (100, 50, 20, and 5 mM) ethylenediaminetetraacetic acid (EDTA). The addition of calcium chloride to fetuin resulted in an increase in peeling, whereas subsequent washing with EDTA abolished this effect, suggesting a role of calcium and possibly other cations in causing peeling. The presented technique for sample preparation prior to hydrazinolysis greatly reduces the level of undesirable cleavage products in O-glycan analysis and increases the robustness of the method.


Assuntos
Hidrazinas/química , Polissacarídeos/metabolismo , Espectrometria de Fluorescência , Animais , Cloreto de Cálcio/química , Bovinos , Cromatografia Líquida de Alta Pressão , Fetuínas/química , Fetuínas/metabolismo , Corantes Fluorescentes/química , Glicosilação , Mucinas/química , Mucinas/metabolismo , Glândula Submandibular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA