Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152331

RESUMO

Parkinson's disease (PD) is a multifaceted disease characterized by degeneration of nigrostriatal dopaminergic neurons, which results in motor and non-motor dysfunctions. Accumulation of α-synuclein (αSYN) in Lewy bodies is a key pathological feature of PD. Although the exact cause of PD remains unknown, accumulating evidence suggests that brain infiltration of T cells plays a critical role in the pathogenesis of disease, contributing to neuroinflammation and dopaminergic neurodegeneration. Here, we used a mouse model of brain-infused aggregated αSYN, which recapitulates motor and non-motor dysfunctions seen in PD patients. We found that αSYN-induced motor dysfunction in mice is accompanied by an increased number of brain-residing Th17 (IL17+ CD4+) cells, but not CD8+ T cells. To evaluate whether the modulation of T cell response could rescue αSYN-induced damage, we chronically treated animals with abatacept (8 mg/kg, sc, 3x per week), a selective T-cell co-stimulation modulator. We found that abatacept treatment decreased Th1 (IFNƔ+ CD4+) and Th17 (IL17+ CD4+) cells in the brain, rescued motor function and prevented dopaminergic neuronal loss in αSYN-infused mice. These results highlight the significance of effector CD4+ T cells, especially Th17, in the progression of PD and introduce novel possibilities for repurposing immunomodulatory drugs used for arthritis as PD-modifying therapies.

2.
Front Immunol ; 14: 1158460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114062

RESUMO

Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Microglia/metabolismo , COVID-19/metabolismo , SARS-CoV-2
3.
Mol Cell Neurosci ; 118: 103694, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954382

RESUMO

Rupture and stretching of spinal roots are common incidents that take place in high-energy accidents. The proximal axotomy of motoneurons by crushing of ventral roots is directly related to the degeneration of half of the lesioned population within the first two weeks. Moreover, only a small percentage of surviving motoneurons can successfully achieve regeneration after such a proximal lesion, and new treatments are necessary to improve this scenario. In this sense, mesenchymal stem cells (MSC) are of great interest once they secrete a broad spectrum of bioactive molecules that are immunomodulatory and can restore the environment after a lesion. The present work aimed at studying the effects of human mesenchymal stem cells (hMSC) therapy after ventral root crush (VRC) in mice. We evaluated motoneuron survival, glial reaction, and synapse preservation at the ventral horn. For this purpose, C57BL/6 J were submitted to a crush procedure of L4 to L6 ventral roots and treated with a single intravenous injection of adipose-derived hMSC. Evaluation of the results was carried out at 7, 14, and 28 days after injury. Analysis of motoneuron survival and astrogliosis showed that hMSC treatment resulted in higher motoneuron preservation (motoneuron survival ipsi/contralateral ratio: VRC group = 53%, VRC + hMSC group = 66%; p < 0.01), combined with reduction of astrogliosis (ipsi/contralateral GFAP immunolabeling: VRC group = 470%, VRC + hMSC group = 250%; p < 0.001). The morphological classification and Sholl analysis of microglial activation revealed that hMSC treatment reduced type V and increased type II profiles, indicating an enhancement of surveying over activated microglial cells. The glial reactivity modulation directly influenced synaptic inputs in apposition to axotomized motoneurons. In the hMSC-treated group, synaptic maintenance was increased (ipsi/contralateral synaptophysin immunolabeling: VRC group = 53%, VRC + hMSC group = 64%; p < 0.05). Overall, the present data show that intravenous injection of hMSC has neuroprotective and anti-inflammatory effects, decreasing reactive astrogliosis, and microglial reaction. Also, such cell therapy results in motoneuron preservation, combined with significant maintenance of spinal cord circuits, in particular those related to the ventral horn.


Assuntos
Gliose , Células-Tronco Mesenquimais , Animais , Gliose/terapia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Medula Espinal , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30991078

RESUMO

Nitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated response, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG. We observed that the repeated (7 days), but not acute (1 day), systemic administration of the NOS inhibitor aminoguanidine (AMG; 15 mg/kg/day) increased the latency to escape from the open arm of the elevated T-maze (ETM) and inhibited the number of jumps in hypoxia-induced escape reaction in rats, suggesting a panicolytic-like effect. Repeated, but not acute, AMG administration (15 mg/kg) also decreased nitrite levels and increased TRKB phosphorylation at residues Y706/7 in the dPAG. Notwithstanding the lack of AMG effect on total BDNF levels in this structure, the microinjection of the TRK antagonist K252a into the dPAG blocked the anti-escape effect of this drug in the ETM. Taken together our data suggest that the inhibition of NO production by AMG increases the levels of pTRKB, which is required for the panicolytic-like effect observed.


Assuntos
Ansiolíticos/farmacologia , Guanidinas/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Pânico/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Reação de Fuga/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nitritos/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Behav Brain Res ; 364: 99-105, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30768992

RESUMO

Although the etiology of panic disorder (PD) remains elusive, accumulating evidence suggests a key role for the dorsal periaqueductal gray matter (dPAG). There is also evidence that this midbrain area is critically involved in mediation of the panicolytic effect of antidepressants, which with high potency benzodiazepines (e.g. alprazolam and clonazepam) are first line treatment for PD. Whether the dPAG is also implicated in the antipanic effect of the latter drugs is, however, still unknown. We here investigated the consequences of blocking GABAA or benzodiazepine receptors within the dPAG, with bicuculline (5 pmol) and flumazenil (80 nmol), respectively, on the panicolytic and anxiolytic effects of alprazolam (4 mg/kg). Microinjection of these antagonists fully blocked the anti-escape effect, considered as a panicolytic-like action, caused by a single systemic injection of alprazolam in male Wistar rats submitted to the elevated T-maze. These antagonists, however, did not affect the anxiolytic effect of the benzodiazepine on inhibitory avoidance acquisition and punished responding, measured in the elevated T-maze and Vogel conflict tests, respectively. Altogether, our findings show the involvement of GABAA/benzodiazepine receptors of the dPAG in the panicolytic, but not the anxiolytic effect caused by alprazolam. They also implicate the dPAG as the fulcrum of the effects of different classes of clinically effective antipanic drugs.


Assuntos
Alprazolam/farmacologia , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Benzodiazepinas/farmacologia , Bicuculina/farmacologia , Reação de Fuga/efeitos dos fármacos , Flumazenil/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Pânico/fisiologia , Transtorno de Pânico/tratamento farmacológico , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30742862

RESUMO

Exposure of rats to an environment with low O2 levels evokes a panic-like escape behavior and recruits the dorsal periaqueductal gray (dPAG), which is considered to be a key region in the pathophysiology of panic disorder. The neurochemical basis of this response is, however, currently unknown. We here investigated the role played by nitric oxide (NO) within the dPAG in mediation of the escape reaction induced by hypoxia exposure. The results showed that exposure of male Wistar rats to 7% O2 increased nitrite levels, a NO metabolite, in the dPAG but not in the amygdala or hypothalamus. Nitrite levels in the dPAG were correlated with the number of escape attempts during the hypoxia challenge. Injections of the NO synthesis inhibitor NPA, the NO-scavenger c- PTIO, or the NMDA receptor antagonist AP-7 into the dorsolateral column of the periaqueductal gray (dlPAG) inhibited escape expression during hypoxia, without affecting the rats' locomotion. Intra-dlPAG administration of c-PTIO had no effect on the escape response evoked by the elevated-T maze, a defensive behavior that has also been associated with panic attacks. Altogether, our results suggest that NO plays a critical role in mediation of the panic-like defensive response evoked by exposure to low O2 concentrations.


Assuntos
Reação de Fuga/fisiologia , Hipóxia/fisiopatologia , Óxido Nítrico/fisiologia , Pânico/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , 2-Amino-5-fosfonovalerato/administração & dosagem , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacologia , Tonsila do Cerebelo/metabolismo , Animais , Arginina/administração & dosagem , Arginina/análogos & derivados , Arginina/farmacologia , Reação de Fuga/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Microinjeções , Atividade Motora/efeitos dos fármacos , Nitritos/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Ratos
7.
Artigo em Inglês | MEDLINE | ID: mdl-29111406

RESUMO

Exposure to elevated concentrations of CO2 or hypoxia has been widely used in psychiatric research as a panic provoking stimulus. However, the use of these respiratory challenges to model panic-like responses in experimental animals has been less straightforward. Little data is available, from behavioral and endocrine perspectives, to support the conclusion that a marked aversive situation, such as that experienced during panic attacks, was evoked in these animals. We here compared the behavioral responses of male CB57BL/6 mice during exposure to 20% CO2 or 7% O2 and its consequence on plasma levels of corticosterone. We also evaluated whether clinically-effective panicolytic drugs affect the behavioral responses expressed during CO2 exposure. The results showed that whereas hypoxia caused a marked reduction in locomotion, inhalation of CO2-enriched air evoked an active escape response, characterized by bouts of upward leaps directed to the border of the experimental cage, interpreted as escape attempts. Corticosterone levels were increased 30min after either of the respiratory challenges used, but it was higher in the hypoxia group. Chronic (21days), but not acute, treatment with fluoxetine or imipramine (5, 10 or 15mg/kg) or a single injection of alprazolam (0.025, 0.05 or 0.1mg/kg), but not of the anxiolytic diazepam (0.025, 0.05 or 0.1 and 1mg/kg) reduced the number of escape attempts, indicating a panicolytic-like effect. Altogether, the results suggest that whereas hypoxia increased anxiety, exposure to 20% CO2 evoked a panic-like state. The latter condition/test protocol seems to be a simple and validated model for studying in mice pathophysiological mechanisms and the screening of novel drugs for panic disorder.


Assuntos
Dióxido de Carbono/metabolismo , Reação de Fuga/fisiologia , Hipóxia/fisiopatologia , Pânico/fisiologia , Alprazolam/farmacologia , Análise de Variância , Animais , Dióxido de Carbono/administração & dosagem , Corticosterona/metabolismo , Diazepam/farmacologia , Relação Dose-Resposta a Droga , Reação de Fuga/efeitos dos fármacos , Fluoxetina/farmacologia , Hipóxia/psicologia , Imipramina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Pânico/efeitos dos fármacos , Psicotrópicos/farmacologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA