Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Sens J ; 24(5): 6888-6897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476583

RESUMO

We developed an ankle-worn gait monitoring system for tracking gait parameters, including length, width, and height. The system utilizes ankle bracelets equipped with wide-angle infrared (IR) stereo cameras tasked with monitoring a marker on the opposing ankle. A computer vision algorithm we have also developed processes the imaged marker positions to estimate the length, width, and height of the person's gait. Through testing on multiple participants, the prototype of the proposed gait monitoring system exhibited notable performance, achieving an average accuracy of 96.52%, 94.46%, and 95.29% for gait length, width, and height measurements, respectively, despite distorted wide-angle images. The OptiGait system offers a cost-effective and user-friendly alternative compared to existing gait parameter sensing systems, delivering comparable accuracy in measuring gait length and width. Notably, the system demonstrates a novel capability in measuring gait height, a feature not previously reported in the literature.

2.
Micromachines (Basel) ; 12(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922091

RESUMO

Commercially available biomedical wearable sensors to measure tensile force/strain still struggle with miniaturization in terms of weight, size, and conformability. Flexible and epidermal electronic devices have been utilized in these applications to overcome these issues. However, current sensors still require a power supply and some form of powered data transfer, which present challenges to miniaturization and to applications. Here, we report on the development of flexible, passive (thus zero power consumption), and biocompatible nanostructured photonic devices that can measure tensile strain in real time by providing an optical readout instead of an electronic readout. Hierarchical silver (Ag) nanostructures in various thicknesses of 20-60 nm were fabricated and embedded on a stretchable substrate using e-beam lithography and a low-temperature dewetting process. The hierarchical Ag nanostructures offer more design flexibility through a two-level design approach. A tensional force applied in one lateral (x- or y-) direction of the stretchable substrate causes a Poisson contraction in the other, and as a result, a shift in the reflected light of the nanostructures. A clear blue shift of more than 100 nm in peak reflectance in the visible spectrum was observed in the reflected color, making the devices applicable in a variety of biomedical photonic sensing applications.

3.
Sci Rep ; 5: 15861, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26515117

RESUMO

Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires. Inspired by compound eyes in nature, these microlenses are designed to point along various angles in order to capture images, offering an exceptionally wide field of view. Moreover, by flexing the substrate, the lens position can be adjusted, thus achieving axial focus scanning. An array of microlenses on a flexible substrate was incorporated into an optical system to demonstrate high resolution imaging of objects located at different axial and angular positions. These silicon based microlenses could be integrated with electronics and have a wide range of potential applications, from medical imaging to surveillance.


Assuntos
Aumento da Imagem/métodos , Procedimentos Analíticos em Microchip/métodos , Desenho de Equipamento , Aumento da Imagem/instrumentação , Lentes , Nanofios/química , Nanofios/ultraestrutura , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA