Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719973

RESUMO

This study aimed to evaluate the effect of including soybean molasses (SM) on performance, blood parameters, carcass traits, meat quality, fatty acid and muscle (longissimus thoracis) transcriptomic profiles of castrated lambs. Twenty Dorper × Santa Inês lambs (20.06 ± 0.76 kg BW) were assigned to a randomized block design, stratified by BW, with the following treatments: CON - 0 g/kg of SM and SM20 - 200 g/kg of SM on DM basis, allocated in individual pens. The diet consisted of 840 g/kg concentrate and 160 g/kg corn silage for 76 days, with the first 12 days as an adaptation period and the remaining 64 days on the finishing diet. The SM20 diet increased blood urea concentration (P = 0.03) while reduced glucose concentration (P = 0.04). Lambs fed SM showed higher subcutaneous fat deposition (P = 0.04) and higher subcutaneous adipocyte diameter (P < 0.01), in addition to reduced meat lipid oxidation (P < 0.01). Soybean molasses reduced the quantity of branched-chain fatty acids in longissimus thoracis (P = 0.05) and increased the quantity of saturated fatty acids (P = 0.01). In the transcriptomic analysis, 294 genes were identified as differentially expressed, which belong to pathways such as oxidative phosphorylation, citric acid cycle, and monosaccharide metabolic process. In conclusion, diet with SM increased carcass fat deposition, reduced lipid oxidation, and changed the energy metabolism, supporting its use in ruminant nutrition.

2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37402612

RESUMO

Our objective was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. In experiment 1, a total of 138 Nellore bulls (initial body weight, 360 ± 37.3 kg) were housed in pens (27 pens with either 4 or 5 bulls per pen) and fed a high-concentrate diet for 96 d, containing 1) no addition of 3-NOP (control), 2) inclusion of 3-NOP at 100 mg/kg dry matter (DM), and 3) inclusion of 3-NOP at 150 mg/kg DM. No adverse effects of 3-NOP were observed on DM intake (DMI), animal performance, and gain:feed (P > 0.05). In addition, there was no effect (P > 0.05) of 3-NOP on carcass characteristics (subcutaneous fat thickness and rib eye area). In experiment 2, 24 bulls (initial BW, 366 ± 39.6 kg) housed in 12 pens (2 bulls/pen) from experiment 1 were used for CH4 measurements and nitrogen balance. Irrespective of the level, 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), CH4 yield (CH4/DMI; ~40.7%) and CH4 intensity (CH4/average daily gain; ~38.6%). Moreover, 3-NOP significantly reduced the gross energy intake lost as CH4 by 42.5% (P < 0.001). The N retention: N intake ratio was not affected by 3-NOP (P = 0.19). We conclude that feeding 3-NOP is an effective strategy to reduce methane emissions, with no impairment on feedlot cattle performance.


During fiber digestion in the rumen, enteric methane is produced. Methane is a potent greenhouse gas. Recently several studies have focused on developing synthetic compounds and their utilization as specific inhibitors of methanogenesis. 3-Nitrooxypropanol is a structural compound that can help to mitigate CH4 emissions. The objective of this study was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. No effect of 3-NOP on animal performance and N balance was found. However, regarding CH4 production 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), methane yield (CH4/dry matter intake; ~40.7%), and CH4 intensity (CH4/average daily gain; ~38.6%). This study provides information on the potential role of 3-NOP on reducing CH4 emissions from feedlot cattle without reducing animal performance.


Assuntos
Suplementos Nutricionais , Metano , Bovinos , Animais , Masculino , Suplementos Nutricionais/análise , Clima Tropical , Ração Animal/análise , Dieta/veterinária , Nitrogênio/farmacologia , Rúmen
3.
Front Physiol ; 13: 892828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910562

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) channels are sensitive to warm ambient temperatures (Tas), triggering heat loss responses in adult rats in a Tas range of ∼26-30°C. In birds, however, the thermoregulatory role of TRPV4 has never been shown. Here, we hypothesized that stimulation of TRPV4 induces thermolytic responses for body temperature (Tb) maintenance in birds, and that this function is already present in early life, when the Ta range for TRPV4 activation does not represent a warm condition for these animals. We first demonstrated the presence of TRPV4 in the dorsal and ventral skin of chickens (Gallus gallus domesticus) by immunohistochemistry. Then, we evaluated the effects of the TRPV4 agonist, RN1747, and the TRPV4 antagonists, HC067047 and GSK2193874, on Tb and thermoeffectors at different Tas in 5-day-old chicks and 60-day-old adult chickens. For the chicks, RN1747 transiently reduced Tb both in thermoneutrality (31°C) and in a cold Ta for this phase (26°C), which relied on huddling behavior inhibition. The TRPV4 antagonists alone did not affect Tb or thermoeffectors but blocked the Tb decrease and huddling inhibition promoted by RN1747. For the adults, TRPV4 antagonism increased Tb when animals were exposed to 28°C (suprathermoneutral condition for adults), but not to 19°C. In contrast, RN1747 decreased Tb by reducing metabolic rate and activating thermal tachypnea at 19°C, a Ta below the activation range of TRPV4. Our results indicate that peripheral TRPV4 receptors are functional in early life, but may be inhibited at that time when the range of activation (∼26-30°C) represents cold Ta for chicks, and become physiologically relevant for Tb maintenance when the activation Ta range for TRPV4 becomes suprathermoneutral for adult chickens.

4.
Arch Anim Nutr ; 76(2): 159-173, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35938451

RESUMO

Knowledge of energy requirements is necessary to optimise the nutritional management of animals. For tortoises, very little is known about their nutrient and energy requirements. Data on substrate oxidation and the implications of starch or fat intake on the energy metabolism are lacking. The present study compared the daily energy expenditures (DEE) of red-footed tortoises (Chelonoidis carbonaria) that were fed three extruded diets: a control diet high in fibre and two test diets, one with high starch content and another with high fat content. A total of 18 tortoises (5.5 ± 1.18 kg) were used in a completely randomised design, with 6 animals per diet. After 14 months of experimental diet intake and 48 h of preliminary fasting, the animals were kept for 12 h in 70-l respiratory chambers. An open "push mode" system was used to determine the carbon dioxide production and oxygen consumption levels for the subsequent calculations of DEE. The data were analysed with ANOVA, and the means were compared by using Tukey's test (p < 0.05). The body weights, chamber temperatures and food intakes of the tortoises were similar among the treatments (p > 0.05). There were no significant differences in oxygen consumption (21.7 ± 3.16 ml · kg-1 · h-1), carbon dioxide production (18.1 ± 1.96 ml · kg-1 · h-1), or DEE (9.7 ± 1.04 kJ · kg-1 d-1) between diets or sex (p > 0.05). The respiratory quotients (0.84 ± 0.11) were also similar among the diets (p > 0.05). The DEE of red footed tortoises did not differ after a long-term starch or fat intake.


Assuntos
Tartarugas , Ração Animal/análise , Animais , Dióxido de Carbono , Dieta/veterinária , Fibras na Dieta , Metabolismo Energético , Amido
5.
Front Vet Sci ; 8: 650203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164448

RESUMO

This study aimed to estimate the protein requirements for the maintenance of growing Saanen goats of different sexes from 5 to 45 kg of body weight (BW) using two methods and applying a meta-analysis. For this purpose, two datasets were used. One dataset was used to evaluate the effects of sex on the protein requirements for maintenance using the comparative slaughter technique. This dataset was composed of 185 individual records (80 intact males, 62 castrated males, and 43 females) from six studies. The other dataset was used to evaluate the effects of sex on the protein requirements for maintenance using the N balance method. This dataset was composed of 136 individual records (59 intact males, 43 castrated males, and 34 females) from six studies. All studies applied an experimental design that provided different levels of N intake and different levels of N retention, allowing the development of regression equations to predict the net protein requirement for maintenance (NPM) and the metabolizable protein (MP) requirements for maintenance (MPM) in Saanen goats. The efficiency of MP use for maintenance (kPM) was computed as NPM/MPM. The efficiency of MP use for gain (kPG) was calculated using the equation of daily protein retained against daily MP intake above maintenance. A meta-analysis was applied using the MIXED procedure of SAS, in which sex was considered a fixed effect, and blocks nested in the studies and goat sex were considered as random effects. The NPM did not differ between sexes, irrespective of the approach used. The daily NPM estimated was 1.23 g/kg0.75 BW when using the comparative slaughter technique, while it was 3.18 g/kg0.75 BW when using the N balance technique for growing Saanen goats. The MPM estimated was 3.8 g/kg0.75 BW, the kPM was 0.33, and the kPG was 0.52. We observed that the NPM when using the comparative slaughter technique in growing Saanen goats is lower than that recommended by the current small ruminant feeding systems; on the other hand, the MPM was similar to previous reports by the feeding systems. Sex did not affect the protein requirements for maintenance and the efficiencies of use of metabolizable protein.

6.
Transl Anim Sci ; 3(3): 999-1010, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32704864

RESUMO

The aim of this review is to describe the main findings of studies carried out during the last decades applying the California net energy system (CNES) in goats. This review also highlights the strengths and pitfalls while using CNES in studies with goats, as well as provides future perspectives on energy requirements of goats. The nonlinear relationship between heat production and metabolizable energy intake was used to estimate net energy requirements for maintenance (NEm). Our studies showed that NEm of intact and castrated male Saanen goats were approximately 15% greater than female Saanen goats. Similarly, NEm of meat goats (i.e., >50% Boer) was 8.5% greater than NEm of dairy and indigenous goats. The first partial derivative of allometric equations using empty body weight (EBW) as independent variable and body energy as dependent variable was used to estimate net energy requirements for gain (NEg). In this matter, female Saanen goats had greater NEg than males; also, castrated males had greater NEg than intact males. This means that females have more body fat than males when evaluated at a given EBW or that degree of maturity affects NEg. Our preliminary results showed that indigenous goats had NEg 14% and 27.5% greater than meat and dairy goats, respectively. Sex and genotype also affect the efficiency of energy use for growth. The present study suggests that losses in urine and methane in goats are lower than previously reported for bovine and sheep, resulting in greater metabolizable energy:digestible energy ratio (i.e., 0.87 to 0.90). It was demonstrated that the CNES successfully works for goats and that the use of comparative slaughter technique enhances the understanding of energy partition in this species, allowing the development of models applied specifically to goat. However, these models require their evaluation in real-world conditions, permitting continuous adjustments.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28285958

RESUMO

Environmental changes during perinatal development can affect the postnatal life. In this sense, chicken embryos that experience low levels of O2 over a specific phase of incubation can have their tissue growth reduced and the ventilatory response to hypoxia blunted, at least until hatching. Additionally, exposure to low level of O2 after birth reduces the thermogenesis as well. In the present study, we tested the hypothesis that hypoxia over the third week of incubation affects the thermoregulation of juvenile chicks at an age when thermogenesis is already expected to be well-developed. To this end, we measured body temperature (Tb) and oxygen consumption (V̇02) under acute hypoxia or different ambient temperatures (Ta) of 1 and 10day-old chicks that have been exposed to 21% O2 for entire incubation (Nx) or to 15% O2 in the last week of incubation (Hx). We also assessed the thermal preference under normoxia or acute hypoxia of the older chicks from both incubation groups in a thermocline. Hypoxia over incubation reduced growth but did not affect the cold-induced thermogenesis in hatchlings. Regarding the juvenile Hx, present data indicate a catch up growth with higher resting V̇02, a thermal preference for warmer Tas and a possible higher thermal conductance. In conclusion, our results show that hypoxia over the third week of incubation can affect the thermoregulation at least until 10days after hatch in chickens.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Galinhas/metabolismo , Desenvolvimento Embrionário , Consumo de Oxigênio/fisiologia , Animais , Animais Recém-Nascidos , Galinhas/crescimento & desenvolvimento , Metabolismo Energético , Feminino , Hipóxia/metabolismo , Termogênese/fisiologia
8.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R896-905, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26984892

RESUMO

Nitric oxide (NO) plays a role in thermogenesis but does not mediate immune-to-brain febrigenic signaling in rats. There are suggestions of a different situation in birds, but the underlying evidence is not compelling. The present study was designed to clarify this matter in 5-day-old chicks challenged with a low or high dose of bacterial LPS. The lower LPS dose (2 µg/kg im) induced fever at 3-5 h postinjection, whereas 100 µg/kg im decreased core body temperature (Tc) (at 1 h) followed by fever (at 4 or 5 h). Plasma nitrate levels increased 4 h after LPS injection, but they were not correlated with the magnitude of fever. The NO synthase inhibitor (N(G)-nitro-l-arginine methyl ester, l-NAME; 50 mg/kg im) attenuated the fever induced by either dose of LPS and enhanced the magnitude of the Tc reduction induced by the high dose in chicks at 31-32°C. These effects were associated with suppression of metabolic rate, at least in the case of the high LPS dose. Conversely, the effects of l-NAME on Tc disappeared in chicks maintained at 35-36°C, suggesting that febrigenic signaling was essentially unaffected. Accordingly, the LPS-induced rise in the brain level of PGE2 was not affected by l-NAME. Moreover, l-NAME augmented LPS-induced huddling, which is indicative of compensatory mechanisms to run fever in the face of attenuated thermogenesis. Therefore, as in rats, systemic inhibition of NO synthesis attenuates LPS-induced fever in chicks by affecting thermoeffector activity and not by interfering with immune-to-brain signaling. This may constitute a conserved effect of NO in endotherms.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Galinhas/fisiologia , Febre/induzido quimicamente , Lipopolissacarídeos/toxicidade , Óxido Nítrico/metabolismo , Animais , Comportamento Animal , Dinoprostona/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/metabolismo , Nitritos/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA