Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(12): e2300294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821361

RESUMO

Natural products belonging to different chemical classes have been established as a promising source of novel anticancer drugs. Several low-molecular-weight compounds from the classes of monoterpenes, phenylpropanoids, and flavonoids were shown to possess anticancer activities in previous studies. In this work, over 20 semisynthetic derivatives of molecules belonging to these classes, namely thymol, eugenol, and 6-hydroxyflavanone were synthesized and tested for their cytotoxicity against two human cancer cell lines, namely AGS cells (gastric adenocarcinoma) and A549 cells (human lung carcinoma). An initial screening based on viability assessment was performed to identify the most cytotoxic compounds at 100 µM. The results evidenced that two 6-hydroxyflavanone derivatives were the most cytotoxic among the compounds tested, being selected for further studies. These derivatives displayed enhanced toxicity when compared with their natural counterparts. Moreover, the lactate dehydrogenase (LDH) assay showed that the loss of cell viability was not accompanied by a loss of membrane integrity, thus ruling out a necrotic process. Morphological studies with AGS cells demonstrated chromatin condensation compatible with apoptosis, confirmed by the activation of caspase 3/7. Furthermore, a viability assay on a noncancer human embryonic lung fibroblast cell line (MRC-5) confirmed that these two derivatives possess selective anticancer activity.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Células A549 , Neoplasias Pulmonares/patologia , Apoptose , Proliferação de Células
2.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296773

RESUMO

A recently synthesized new eugenol derivative, ethyl 4-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)butanoate, with a high insecticidal activity against Sf9 (Spodoptera frugiperda) insect cells, was encapsulated in the liposomal formulations of egg-phosphatidylcholine/cholesterol (Egg-PC:Ch) 70:30 and 100% dioleoylphosphatidylglycerol (DOPG), aiming at the future application as insecticides. Compound-loaded DOPG liposomes have sizes of 274 ± 12 nm, while Egg-PC:Ch liposomes exhibit smaller hydrodynamic diameters (69.5 ± 7 nm), high encapsulation efficiency (88.8 ± 2.7%), higher stability, and a more efficient compound release, thus, they were chosen for assays in Sf9 insect cells. The compound elicited a loss of cell viability up to 80% after 72 h of incubation. Relevantly, nanoencapsulation maintained the toxicity of the compound toward insect cells while lowering the toxicity toward human cells, thus showing the selectivity of the system. Structure-based inverted virtual screening was used to predict the most likely targets and molecular dynamics simulations and free energy calculations were used to demonstrate that this molecule can form a stable complex with insect odorant binding proteins and/or acetylcholinesterase. The results are promising for the future application of compound-loaded nanoliposome formulations as crop insecticides.

3.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409123

RESUMO

Eugenol, 4-allyl-2-methoxyphenol, is the main constituent of clove essential oil and has demonstrated relevant biological activity, namely anticancer activity. Aiming to increase this activity, we synthesized a series of eugenol ß-amino alcohol and ß-alkoxy alcohol derivatives, which were then tested against two human cancer cell lines, namely gastric adenocarcinoma cells (AGS) and lung adenocarcinoma cells (A549). An initial screening was performed to identify the most cytotoxic compounds. The results demonstrated that three ß-amino alcohol derivatives had anticancer activity that justified subsequent studies, having been shown to trigger apoptosis. Importantly, the most potent molecules displayed no appreciable toxicity towards human noncancer cells. Structure-activity relationships show that changes in eugenol structure led to enhanced cytotoxic activity and can contribute to the future design of more potent and selective drugs.


Assuntos
Antineoplásicos , Eugenol , Álcoois , Amino Álcoois , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Óleo de Cravo/química , Humanos
4.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771025

RESUMO

A series of ß-amino alcohols were prepared by the reaction of eugenol epoxide with aliphatic and aromatic amine nucleophiles. The synthesized compounds were fully characterized and evaluated as potential insecticides through the assessment of their biological activity against Sf9 insect cells, compared with a commercial synthetic pesticide (chlorpyrifos, CHPY). Three derivatives bearing a terminal benzene ring, either substituted or unsubstituted, were identified as the most potent molecules, two of them displaying higher toxicity to insect cells than CHPY. In addition, the most promising molecules were able to increase the activity of serine proteases (caspases) pivotal to apoptosis and were more toxic to insect cells than human cells. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these molecules likely target acetylcholinesterase and/or the insect odorant-binding proteins and are able to form stable complexes with these proteins. Encapsulation assays in liposomes of DMPG and DPPC/DMPG (1:1) were performed for the most active compound, and high encapsulation efficiencies were obtained. A thermosensitive formulation was achieved with the compound release being more efficient at higher temperatures.


Assuntos
Amino Álcoois/química , Eugenol/química , Inseticidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Inseticidas/síntese química , Inseticidas/química , Modelos Moleculares , Estrutura Molecular , Spodoptera
5.
RSC Adv ; 11(54): 34024-34035, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35497284

RESUMO

New compounds with potential insecticide activity were synthesized by structural modifications performed in the monoterpenoid phenolic moieties of carvacrol and thymol, resulting in a set of derivatives with the ether function containing the propyl, chloropropyl or hydroxypropyl chains, as well as a bicyclic ether with an unsaturated chain containing a carboxylic acid terminal. In addition, an analogue of carvacrol and thymol isomers bearing methoxyl, 1-hydroxyethyl and (3-chlorobenzoyl)oxy, instead of the three original methyl groups, was also synthesized. Several structural changes that resulted in diminished insecticide activity have been identified, but two significantly active molecules have been synthesized, one of them being less toxic to human cells than the naturally-derived starting materials. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these active molecules likely target the insect odorant binding proteins and/or acetylcholinesterase and are able to form stable complexes. For the most promising compounds, nanoencapsulation assays were carried out in liposomes of egg phosphatidylcholine/cholesterol (7 : 3) prepared by both thin film hydration and ethanolic injection methods. The compound-loaded liposomes were generally monodisperse and with sizes smaller than or around 200 nm. The thin film hydration method allowed high encapsulation efficiencies (above 85%) for both compounds and a delayed release, while for the systems prepared by ethanolic injection the encapsulation efficiency is lower than 50%, but the release is almost complete in two days.

6.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291666

RESUMO

Eugenol, the generic name of 4-allyl-2-methoxyphenol, is the major component of clove essential oil, and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant actions. New O-alkylated eugenol derivatives, bearing a propyl chain with terminals like hydrogen, hydroxyl, ester, chlorine, and carboxylic acid, were synthesized in the present work. These compounds were later subjected to epoxidation conditions to give the corresponding oxiranes. All derivatives were evaluated against their effect upon the viability of insect cell line Sf9 (Spodoptera frugiperda), demonstrating that structural changes elicit marked effects in terms of potency. In addition, the most promising molecules were evaluated for their impact in cell morphology, caspase-like activity, and potential toxicity towards human cells. Some molecules stood out in terms of toxicity towards insect cells, with morphological assessment of treated cells showing chromatin condensation and fragmentation, which are compatible with the occurrence of programmed cell death, later confirmed by evaluation of caspase-like activity. These findings point out the potential use of eugenol derivatives as semisynthetic insecticides from plant natural products.


Assuntos
Eugenol/farmacologia , Inseticidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Caspases/metabolismo , Linhagem Celular , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Eugenol/análogos & derivados , Eugenol/síntese química , Humanos , Inseticidas/síntese química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Parasitária , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA