Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636755

RESUMO

Natural Rubber Latex (NRL) has shown to be a promising biomaterial for use as a drug delivery system to release various bioactive compounds. It is cost-effective, easy to handle, biocompatible, and exhibits pro-angiogenic and pro-healing properties for both soft and hard tissues. NRL releases compounds following burst and sustained release kinetics, exhibiting first-order release kinetics. Moreover, its pore density can be adjusted for tailored kinetics profiles. In addition, biotechnological applications of NRL in amblyopia, smart mattresses, and neovaginoplasty have demonstrated success. This comprehensive review explores NRL's diverse applications in biotechnology and biomedicine, addressing challenges in translating research into clinical practice. Organized into eight sections, the review emphasizes NRL's potential in wound healing, drug delivery, and metallic nanoparticle synthesis. It also addresses the challenges in enhancing NRL's physical properties and discusses its interactions with the human immune system. Furthermore, examines NRL's potential in creating wearable medical devices and biosensors for neurological disorders. To fully explore NRL's potential in addressing important medical conditions, we emphasize throughout this review the importance of interdisciplinary research and collaboration. In conclusion, this review advances our understanding of NRL's role in biomedical and biotechnological applications, offering insights into its diverse applications and promising opportunities for future development.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Látex , Medicina Regenerativa , Borracha , Humanos , Materiais Biocompatíveis/química , Látex/química , Medicina Regenerativa/métodos , Borracha/química , Animais , Cicatrização/efeitos dos fármacos
2.
Biomater Adv ; 157: 213739, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154400

RESUMO

Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.


Assuntos
Hipersensibilidade ao Látex , Látex , Animais , Humanos , Alérgenos , Proteínas , Materiais Biocompatíveis
3.
Int J Biol Macromol ; 242(Pt 1): 124778, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172704

RESUMO

Natural rubber latex (NRL) is a biopolymer widely used in biomedical applications. In this work, we propose an innovative cosmetic face mask, combining the NRL's biological properties with curcumin (CURC), which has a high level of antioxidant activity (AA) to provide anti-aging benefits. Chemical, mechanical and morphological characterizations were performed. The CURC released by the NRL was evaluated by permeation in Franz cells. Cytotoxicity and hemolytic activity assays were performed to assess safety. The findings showed that the biological properties of CURC were preserved after loading in the NRL. About 44.2 % of CURC was released within the first six hours, and in vitro permeation showed that 9.36 % ± 0.65 was permeated over 24h. CURC-NRL was associated with a metabolic activity higher than 70 % in 3 T3 fibroblasts, cell viability ≥95 % in human dermal fibroblasts, and a hemolytic rate ≤ 2.24 % after 24 h. Furthermore, CURC-NRL maintained the mechanical characteristics (range suitable) for human skin application. We observed that CURC-NRL preserved ~20 % antioxidant activity from curcumin-free after loading in the NRL. Our results suggest that CURC-NRL has the potential to be used in the cosmetics industry, and the experimental methodology utilized in this study can be applied to different kinds of face masks.


Assuntos
Curcumina , Borracha , Humanos , Antioxidantes/farmacologia , Máscaras , Curcumina/farmacologia , Curcumina/química , Envelhecimento
4.
Crit Rev Anal Chem ; 51(5): 399-410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32212927

RESUMO

Transferrin is a protein involved in iron uptake by cells and has been identified as a potential target for directing drug-loaded nanoparticles for cancer treatment and diagnosis. Most methods for conjugation of transferrin and nanoparticles involve the formation of a thioeter bond between thiolated transferrin and maleimide-containing nanoparticle. For nanoparticle development, it is important to perform a thorough physicochemical characterization, including quantification of the amount of transferrin functionalizing the delivery system. Thus, following the transferrin and nanoparticle chemical conjugation, an analytical method is need for transferrin quantification. Altogether, we revised both physicochemical and pharmacokinetics transferrin characteristics, the aspects of iron transport after interaction with transferrin, the development of transferrin targeted-nanoparticles, highlighting both their composition, synthesis methods and in vitro/in vivo evaluation. Furthermore, we addressed the analytical methods employed in protein quantification, including spectrophotometric/colorimetric, immunoassays, electrophoretic and chromatographic techniques used to identify and/or quantify of transferrin in biological matrices and drug delivery systems.


Assuntos
Glicoproteínas/química , Transferrina/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química
5.
Curr Med Chem ; 28(16): 3216-3248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32867631

RESUMO

Administration of substances through the skin represents a promising alternative, in relation to other drug administration routes, due to its large body surface area, in order to offer ideal and multiple sites for drug administration. In addition, the administration of drugs through the skin avoids the first-pass metabolism, allowing an increase in the bioavailability of drugs, as well as reducing their side effects. However, the stratum corneum (SC) comprises the main barrier of protection against external agents, mainly due to its structure, composition and physicochemical properties, becoming the main limitation for the administration of substances through the skin. In view of the above, pharmaceutical technology has allowed the development of multiple drug delivery systems (DDS), which include liquid crystals (LC), cubosomes, liposomes, polymeric nanoparticles (PNP), nanoemulsions (NE), as well as cyclodextrins (CD) and dendrimers (DND). It appears that the DDS circumvents the problems of drug absorption through the SC layer of the skin, ensuring the release of the drug, as well as optimizing the therapeutic effect locally. This review aims to highlight the DDS that include LC, cubosomes, lipid systems, PNP, as well as CD and DND, to optimize topical skin therapies.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Cutânea , Portadores de Fármacos , Humanos , Lipossomos , Nanotecnologia , Pele
6.
Curr Med Chem ; 28(10): 1906-1956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32400324

RESUMO

The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.


Assuntos
Nanopartículas Metálicas , Antibacterianos/uso terapêutico , Ouro , Humanos , Prata , Organização Mundial da Saúde
7.
Crit Rev Anal Chem ; 48(6): 517-527, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29701480

RESUMO

Docetaxel (DTX) is an antineoplastic agent of the second generation of the taxoid family. It is a semi-synthetic drug prepared from a precursor extracted of the plant Taxus baccata. The commercial formulation of DTX, Taxotere®, employs the surfactant polysorbate 80, due to the low water solubility of the drug, causing several side effects. Therefore, there is a need to develop delivery systems to reduce the side effects of DTX. In addition, this drug has been qualitative and quantitatively analyzed in pharmaceutical formulations and biological samples. Thus, several techniques and analytical methods have been reported with the aim of optimizing the analytical signal, increasing sensitivity, selectivity and reducing the effects of interference. Herein, we highlight immunoassay, capillary electrophoresis and chromatographic methods. This review presents a summary of physicochemical and pharmacokinetics properties, mechanisms of action, drug delivery systems and analytical methods used in quantification of DTX in diverse matrices such as blood, plasma, oral fluid, urine, carcinoma cells, pharmaceutical formulations and delivery systems.


Assuntos
Líquidos Corporais/química , Neoplasias/química , Preparações Farmacêuticas/análise , Taxoides/análise , Animais , Química Farmacêutica , Docetaxel , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/patologia
8.
Crit Rev Anal Chem ; 48(1): 86-93, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29039968

RESUMO

Ursolic acid (UA) is a naturally occurring triterpenoid which is a promising candidate for the development of new therapeutic approaches and for the prevention and treatment of several diseases owing to its pharmacological importance. However, its low solubility in aqueous medium affects its therapeutic application. Several strategies have been used to overcome this obstacle. In this study, the incorporation of UA in to different drug delivery systems was found to be highly efficient. In addition, important investigations were performed about methods for qualitative and quantitative analyses of UA in various raw materials, including plants, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, gas chromatography-mass spectrometry and capillary electrophoresis were used for this purpose. Thus, this review was performed to evaluate the biological effects of UA demonstrated thus far as well as the currently used, delivery systems and analytical methods.


Assuntos
Triterpenos/análise , Triterpenos/farmacologia , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/farmacologia , Cromatografia Líquida de Alta Pressão , Sistemas de Liberação de Medicamentos , Eletroforese Capilar , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hipoglicemiantes/análise , Hipoglicemiantes/farmacologia , Hipolipemiantes/análise , Hipolipemiantes/farmacologia , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/farmacologia , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA