Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301395, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282459

RESUMO

Hydrogen production by direct seawater electrolysis is an alternative technology to conventional freshwater electrolysis, mainly owing to the vast abundance of seawater reserves on earth. However, the lack of robust, active, and selective electrocatalysts that can withstand the harsh and corrosive saline conditions of seawater greatly hinders its industrial viability. Herein, a series of amorphous transition-metal phospho-borides, namely Co-P-B, Ni-P-B, and Fe-P-B are prepared by simple chemical reduction method and screened for overall alkaline seawater electrolysis. Co-P-B is found to be the best of the lot, requiring low overpotentials of ≈270 mV for hydrogen evolution reaction (HER), ≈410 mV for oxygen evolution reaction (OER), and an overall voltage of 2.50 V to reach a current density of 2 A cm-2 in highly alkaline natural seawater. Furthermore, the optimized electrocatalyst shows formidable stability after 10,000 cycles and 30 h of chronoamperometric measurements in alkaline natural seawater without any chlorine evolution, even at higher current densities. A detailed understanding of not only HER and OER but also chlorine evolution reaction (ClER) on the Co-P-B surface is obtained by computational analysis, which also sheds light on the selectivity and stability of the catalyst at high current densities.

3.
Int J Nanomedicine ; 18: 4055-4066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520301

RESUMO

Purpose: Current antiretroviral therapies (ART) for human immunodeficiency virus (HIV) are not curative, as the virus persists in latent reservoirs, requiring lifelong adherence to ART and increasing the risk of co-morbidities. "Shock and kill" approaches to reactivate HIV from latent reservoirs followed by administration of anti-HIV drugs represent a promising strategy for eradicating latent HIV. To achieve effective shock and kill, we describe a strategy to eradicate the HIV reservoir that combines latency reversing agents (LRAs), broadly neutralizing antibodies (bnAbs), and natural killer (NK) cells. This strategy utilizes a polymer nanodepot (ND) that co-encapsulates the LRA and bnAb to reactivate latent infection and elicit enhanced cytotoxicity from co-administered NK cells. Methods: Poly(lactic-co-glycolic acid) (PLGA) NDs were synthesized using the nanoprecipitation method to co-encapsulate an LRA (TNF-α) and a bnAb (3BNC117) (TNF-α-3BNC117-NDs). ACH-2 cells were used as a cellular model of latent HIV infection. An NK92 subline, genetically modified to constitutively express the Fc receptor CD16, was administered to ACH-2 cells in combination with TNF-α-3BNC117-NDs. ACH-2 cell death and extracellular p24 were measured via flow cytometry and ELISA, respectively. Results: Stable PLGA NDs co-encapsulated TNF-α and 3BNC117 with high efficiencies and released these agents in physiological conditions. NK92 phenotype remained similar in the presence of TNF-α-3BNC117-NDs. TNF-α released from NDs efficiently reactivated HIV in ACH-2 cells, as measured by a 3.0-fold increase in the frequency of intracellular p24 positive cells. Released 3BNC117 neutralized and bound reactivated virus, targeting 57.5% of total ACH-2 cells. Critically, TNF-α-3BNC117-NDs significantly enhanced NK92 cell-mediated killing of ACH-2 cells (1.9-fold) and reduced extracellular levels of p24 to baseline. Conclusion: These findings suggest the therapeutic potential of our novel ND-based tripartite strategy to reactivate HIV from latently infected cells, generate an HIV-specific site for bnAb binding, and enhance the killing of reactivated HIV-infected target cells by NK92 cells.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , Latência Viral , Fator de Necrose Tumoral alfa , Células Matadoras Naturais , Linfócitos T CD4-Positivos
4.
Cytotherapy ; 25(7): 718-727, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278683

RESUMO

BACKGROUND: Adoptive T cell therapy (ATCT) has been successful in treating hematological malignancies and is currently under investigation for solid-tumor therapy. In contrast to existing chimeric antigen receptor (CAR) T cell and/or antigen-specific T cell approaches, which require known targets, and responsive to the need for targeting a broad repertoire of antigens in solid tumors, we describe the first use of immunostimulatory photothermal nanoparticles to generate tumor-specific T cells. METHODS: Specifically, we subject whole tumor cells to Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) before culturing with dendritic cells (DCs), and subsequent stimulation of T cells. This strategy differs from previous approaches using tumor cell lysates because we use nanoparticles to mediate thermal and immunogenic cell death in tumor cells, rendering them enhanced antigen sources. RESULTS: In proof-of-concept studies using two glioblastoma (GBM) tumor cell lines, we first demonstrated that when PBNP-PTT was administered at a "thermal dose" targeted to induce the immunogenicity of U87 GBM cells, we effectively expanded U87-specific T cells. Further, we found that DCs cultured ex vivo with PBNP-PTT-treated U87 cells enabled 9- to 30-fold expansion of CD4+ and CD8+ T cells. Upon co-culture with target U87 cells, these T cells secreted interferon-É£ in a tumor-specific and dose-dependent manner (up to 647-fold over controls). Furthermore, T cells manufactured using PBNP-PTT ex vivo expansion elicited specific cytolytic activity against target U87 cells (donor-dependent 32-93% killing at an effector to target cell (E:T) ratio of 20:1) while sparing normal human astrocytes and peripheral blood mononuclear cells from the same donors. In contrast, T cells generated using U87 cell lysates expanded only 6- to 24-fold and killed 2- to 3-fold less U87 target cells at matched E:T ratios compared with T cell products expanded using the PBNP-PTT approach. These results were reproducible even when a different GBM cell line (SNB19) was used, wherein the PBNP-PTT-mediated approach resulted in a 7- to 39-fold expansion of T cells, which elicited 25-66% killing of the SNB19 cells at an E:T ratio of 20:1, depending on the donor. CONCLUSIONS: These findings provide proof-of-concept data supporting the use of PBNP-PTT to stimulate and expand tumor-specific T cells ex vivo for potential use as an adoptive T cell therapy approach for the treatment of patients with solid tumors.


Assuntos
Glioblastoma , Nanopartículas , Humanos , Leucócitos Mononucleares , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos , Glioblastoma/terapia , Linhagem Celular Tumoral
5.
Nano Res ; 15(3): 2300-2314, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36089987

RESUMO

Despite the promise of immunotherapy such as the immune checkpoint inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 for advanced melanoma, only 26%-52% of patients respond, and many experience grade III/IV immune-related adverse events. Motivated by the need for an effective therapy for patients non-responsive to clinically approved ICIs, we have developed a novel nanoimmunotherapy that combines locally administered Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) with systemically administered agonistic anti-CD137 monoclonal antibody therapy (aCD137). PBNP-PTT was administered at various thermal doses to melanoma cells in vitro, and was combined with aCD137 in vivo to test treatment effects on melanoma tumor progression, animal survival, immunological protection against tumor rechallenge, and hepatotoxicity. When administered at a melanoma-specific thermal dose, PBNP-PTT elicits immunogenic cell death (ICD) in melanoma cells and upregulates markers associated with antigen presentation and immune cell co-stimulation in vitro. Consequently, PBNP-PTT eliminates primary melanoma tumors in vivo, yielding long-term tumor-free survival. However, the antitumor immune effects generated by PBNP-PTT cannot eliminate secondary tumors, despite significantly slowing their growth. The addition of aCD137 enables significant abscopal efficacy and improvement of survival, functioning through activated dendritic cells and tumor-infiltrating CD8+ T cells, and generates CD4+ and CD8+ T cell memory that manifests in the rejection of tumor rechallenge, with no long-term hepatotoxicity. This study describes for the first time a novel and effective nanoimmunotherapy combination of PBNP-PTT with aCD137 mAb therapy for melanoma.

6.
Nanomaterials (Basel) ; 12(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35957076

RESUMO

Prussian blue nanoparticles (PBNPs) are effective photothermal therapy (PTT) agents: they absorb near-infrared radiation and reemit it as heat via phonon-phonon relaxations that, in the presence of tumors, can induce thermal and immunogenic cell death. However, in the context of central nervous system (CNS) tumors, the off-target effects of PTT have the potential to result in injury to healthy CNS tissue. Motivated by this need for targeted PTT agents for CNS tumors, we present a PBNP formulation that targets fibroblast growth factor-inducible 14 (Fn14)-expressing glioblastoma cell lines. We conjugated an antibody targeting Fn14, a receptor abundantly expressed on many glioblastomas but near absent on healthy CNS tissue, to PBNPs (aFn14-PBNPs). We measured the attachment efficiency of aFn14 onto PBNPs, the size and stability of aFn14-PBNPs, and the ability of aFn14-PBNPs to induce thermal and immunogenic cell death and target and treat glioblastoma tumor cells in vitro. aFn14 remained stably conjugated to the PBNPs for at least 21 days. Further, PTT with aFn14-PBNPs induced thermal and immunogenic cell death in glioblastoma tumor cells. However, in a targeted treatment assay, PTT was only effective in killing glioblastoma tumor cells when using aFn14-PBNPs, not when using PBNPs alone. Our methodology is novel in its targeting moiety, tumor application, and combination with PTT. To the best of our knowledge, PBNPs have not been investigated as a targeted PTT agent in glioblastoma via conjugation to aFn14. Our results demonstrate a novel and effective method for delivering targeted PTT to aFn14-expressing tumor cells via aFn14 conjugation to PBNPs.

7.
Adv Healthc Mater ; 11(20): e2201084, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35943173

RESUMO

Photothermal therapy (PTT) represents a promising modality for tumor control typically using infrared light-responsive nanoparticles illuminated by a wavelength-matched external laser. However, due to the constraints of light penetration, PTT is generally restricted to superficially accessible tumors. With the goal of extending the benefits of PTT to all tumor settings, interstitial PTT (I-PTT) is evaluated by the photothermal activation of intratumorally administered Prussian blue nanoparticles with a laser fiber positioned interstitially within the tumor. This interstitial fiber, which is fitted with a terminal diffuser, distributes light within the tumor microenvironment from the "inside-out" as compared to from the "outside-in" traditionally observed during superficially administered PTT (S-PTT). I-PTT improves the heating efficiency and heat distribution within a target treatment area compared to S-PTT. Additionally, I-PTT generates increased cytotoxicity and thermal damage at equivalent thermal doses, and elicits immunogenic cell death at lower thermal doses in targeted neuroblastoma tumor cells compared to S-PTT. In vivo, I-PTT induces significantly higher long-term tumor regression, lower rates of tumor recurrence, and improved long-term survival in multiple syngeneic murine models of neuroblastoma. This study highlights the significantly enhanced therapeutic benefit of I-PTT compared to traditional S-PTT as a promising treatment modality for solid tumors.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Neuroblastoma , Camundongos , Animais , Fototerapia , Terapia Fototérmica , Linhagem Celular Tumoral , Neuroblastoma/terapia , Neuroblastoma/patologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
8.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326601

RESUMO

Photothermal therapy (PTT) is an effective method for tumor eradication and has been successfully combined with immunotherapy. However, besides its cytotoxic effects, little is known about the effect of the PTT thermal dose on the immunogenicity of treated tumor cells. Therefore, we administered a range of thermal doses using Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) and assessed their effects on tumor cell death and concomitant immunogenicity correlates in two human neuroblastoma cell lines: SH-SY5Y (MYCN-non-amplified) and LAN-1 (MYCN-amplified). PBNP-PTT generated thermal dose-dependent tumor cell killing and immunogenic cell death (ICD) in both tumor lines in vitro. However, the effect of the thermal dose on ICD and the expression of costimulatory molecules, immune checkpoint molecules, major histocompatibility complexes, an NK cell-activating ligand, and a neuroblastoma-associated antigen were significantly more pronounced in SH-SY5Y cells compared with LAN-1 cells, consistent with the high-risk phenotype of LAN-1 cells. In functional co-culture studies in vitro, T cells exhibited significantly higher cytotoxicity toward SH-SY5Y cells relative to LAN-1 cells at equivalent thermal doses. This preliminary report suggests the importance of moving past the traditional focus of using PTT solely for tumor eradication to one that considers the immunogenic effects of PTT thermal dose to facilitate its success in cancer immunotherapy.

9.
Nanomedicine (Lond) ; 17(29): 2159-2171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36734362

RESUMO

Aim: To investigate Prussian blue nanoparticles (PBNPs) coated with the synthetic analog of dsRNA polyinosinic-polycytidylic acid (polyIC) for their ability to function as HIV latency reversing agents. Methods: A layer-by-layer method was used to synthesize polyIC-coated PBNPs (polyIC-PBNPs). PolyIC-PBNPs were stable and monodisperse, maintained the native absorbance properties of both polyIC and PBNPs and were obtained with high nanoparticle collection yield and polyIC attachment efficiencies. Results: PolyIC-PBNPs were more effective in reactivating latent HIV than free polyIC in a cell model of HIV latency. Furthermore, polyIC-PBNPs were more effective in promoting immune activation than free polyIC in CD4 and CD8 T cells. Conclusion: PBNPs function as efficient carriers of nucleic acids to directly reverse HIV latency and enhance immune activation.


HIV is a virus that attacks and weakens the immune system. If left untreated, HIV infection leads to AIDS. To combat this, administration of antiretroviral therapy allows HIV to be controlled, and an infected individual may live a normal life. However, there is no cure for HIV because the virus persists within hidden reservoirs of latently infected cells that remain undetected by the immune system. A cure strategy currently under investigation in the field utilizes a latency reversing agent (LRA) to reactivate latent HIV with the goal of promoting a response from the immune system. To achieve this goal, this study used a nanoparticle-based method to administer LRAs. More specifically, the authors synthesized Prussian blue nanoparticles (PBNPs) coated with the LRA polyinosinic-polycytidylic acid (polyIC), a synthetic analog of dsRNA. This study demonstrates that when administered in the form of nanoparticles, polyIC-coated PBNPs generate both enhanced reactivation of HIV and immune activation when compared with free polyIC. These results indicate a promising potential for using PBNPs to deliver LRAs such as polyIC to enhance current and future HIV cure strategies.


Assuntos
Infecções por HIV , HIV-1 , Nanopartículas , Humanos , Ativação Viral , Latência Viral , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos
10.
Adv Nanobiomed Res ; 1(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34435194

RESUMO

A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG-PBNP-PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB-related mortality. The efficacy of the CpG-PBNP-PTT nanoimmunotherapy in a clinically relevant, TH-MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG-PBNP-PTT triggers thermal dose-dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen-presenting molecules. In vivo, intratumorally administered CpG-PBNP-PTT generates complete tumor regression and significantly higher long-term survival compared to controls. Furthermore, CpG-PBNP-PTT-treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell-mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG-PBNP-PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG-PBNP-PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.

11.
Cancer Res ; 80(17): 3649-3662, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605998

RESUMO

Despite the outstanding clinical results of immune checkpoint blockade (ICB) in melanoma and other cancers, clinical trials in breast cancer have reported low responses to these therapies. Current efforts are now focused on improving the treatment efficacy of ICB in breast cancer using new combination designs such as molecularly targeted agents, including histone deacetylase inhibitors (HDACi). These epigenetic drugs have been widely described as potent cytotoxic agents for cancer cells. In this work, we report new noncanonical regulatory properties of ultra-selective HDAC6i over the expression and function of epithelial-mesenchymal transition pathways and the invasiveness potential of breast cancer. These unexplored roles position HDAC6i as attractive options to potentiate ongoing immunotherapeutic approaches. These new functional activities of HDAC6i involved regulation of the E-cadherin/STAT3 axis. Pretreatment of tumors with HDAC6i induced critical changes in the tumor microenvironment, resulting in improved effectiveness of ICB and preventing dissemination of cancer cells to secondary niches. Our results demonstrate for the first time that HDAC6i can both improve ICB antitumor immune responses and diminish the invasiveness of breast cancer with minimal cytotoxic effects, thus departing from the cytotoxicity-centric paradigm previously assigned to HDACi. SIGNIFICANCE: Ultraselective HDAC6 inhibitors can reduce tumor growth and invasiveness of breast cancer by noncanonical mechanisms unrelated to the previously cytotoxic properties attributed to HDAC inhibitors.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Desacetilase 6 de Histona/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Invasividade Neoplásica/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Transl Oncol ; 13(10): 100823, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652470

RESUMO

High-risk neuroblastoma, which is associated with regional and systemic metastasis, is a leading cause of cancer-related mortality in children. Responding to this need for novel therapies for high-risk patients, we have developed a "nanoimmunotherapy," which combines photothermal therapy (PTT) using CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) combined with anti-CTLA-4 (aCTLA-4) immunotherapy. Our in vitro studies demonstrate that in addition to causing ablative tumor cell death, our nanoimmunotherapy alters the surface levels of co-stimulatory, antigen-presenting, and co-inhibitory molecules on neuroblastoma tumor cells. When administered in a syngeneic, murine model of neuroblastoma bearing synchronous Neuro2a tumors, the CpG-PBNP-PTT plus aCTLA-4 nanoimmunotherapy elicits complete tumor regression in both primary (CpG-PBNP-PTT-treated) and secondary tumors, and long-term survival in a significantly higher proportion (55.5%) of treated-mice compared with the controls. Furthermore, the surviving, nanoimmunotherapy-treated animals reject Neuro2a rechallenge, suggesting that the therapy generates immunological memory. Additionally, the depletion of CD4+, CD8+, and NK+ populations abrogate the observed therapeutic responses of the nanoimmunotherapy. These findings demonstrate the importance of concurrent PTT-based cytotoxicity and the antitumor immune effects of PTT, CpG, and aCTLA-4 in generating a robust abscopal effect against neuroblastoma.

13.
Front Immunol ; 11: 789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425949

RESUMO

Highly active antiretroviral therapy (HAART) serves as an effective strategy to combat HIV infections by suppressing viral replication in patients with HIV/AIDS. However, HAART does not provide HIV/AIDS patients with a sterilizing or functional cure, and introduces several deleterious comorbidities. Moreover, the virus is able to persist within latent reservoirs, both undetected by the immune system and unaffected by HAART, increasing the risk of a viral rebound. The field of immunoengineering, which utilizes varied bioengineering approaches to interact with the immune system and potentiate its therapeutic effects against HIV, is being increasingly investigated in HIV cure research. In particular, nanoparticle-based immunoengineered approaches are especially attractive because they offer advantages including the improved delivery and functionality of classical HIV drugs such as antiretrovirals and experimental drugs such as latency-reversing agents (LRAs), among others. Here, we present and discuss the current state of the field in nanoparticle-based immunoengineering approaches for an HIV cure. Specifically, we discuss nanoparticle-based methods for improving HAART as well as latency reversal, developing vaccines, targeting viral fusion, enhancing gene editing approaches, improving adoptively transferred immune-cell mediated reservoir clearance, and other therapeutic and prevention approaches. Although nanoparticle-based immunoengineered approaches are currently at the stage of preclinical testing, the promising findings obtained in these studies demonstrate the potential of this emerging field for developing an HIV cure.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Bioengenharia/métodos , Sistemas de Liberação de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Nanopartículas , Vacinas contra a AIDS/imunologia , Transferência Adotiva/métodos , Animais , Terapia Antirretroviral de Alta Atividade/métodos , Linfócitos T CD4-Positivos/imunologia , Edição de Genes/métodos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Camundongos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
Nanomaterials (Basel) ; 10(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963449

RESUMO

In this study, we describe poly (lactic-co-glycolic) acid (PLGA)-based nanoparticles that combine photothermal therapy (PTT) with epigenetic therapy for melanoma. Specifically, we co-encapsulated indocyanine green (ICG), a PTT agent, and Nexturastat A (NextA), an epigenetic drug within PLGA nanoparticles (ICG-NextA-PLGA; INAPs). We hypothesized that combining PTT with epigenetic therapy elicits favorable cytotoxic and immunomodulatory responses that result in improved survival in melanoma-bearing mice. We utilized a nanoemulsion synthesis scheme to co-encapsulate ICG and NextA within stable and monodispersed INAPs. The INAPs exhibited concentration-dependent and near-infrared (NIR) laser power-dependent photothermal heating characteristics, and functioned as effective single-use agents for PTT of melanoma cells in vitro. The INAPs functioned as effective epigenetic therapy agents by inhibiting the expression of pan-histone deacetylase (HDAC) and HDAC6-specific activity in melanoma cells in vitro. When used for both PTT and epigenetic therapy in vitro, the INAPs increased the expression of co-stimulatory molecules and major histocompatibility complex (MHC) Class I in melanoma cells relative to controls. These advantages persisted in vivo in a syngeneic murine model of melanoma, where the combination therapy slowed tumor progression and improved median survival. These findings demonstrate the potential of INAPs as agents of PTT and epigenetic therapy for melanoma.

15.
Nano Res ; 13(3): 736-744, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34079616

RESUMO

Natural killer (NK) cells are attractive effector cells of the innate immune system against human immunodeficiency virus (HIV) and cancer. However, NK cell therapies are limited by the fact that target cells evade NK cells, for example, in latent reservoirs (in HIV) or through upregulation of inhibitory signals (in cancer). To address this limitation, we describe a biodegradable nanoparticle-based "priming" approach to enhance the cytotoxic efficacy of peripheral blood mononuclear cell-derived NK cells. We present poly(lactic-co-glycolic acid) (PLGA) nanodepots (NDs) that co-encapsulate prostratin, a latency-reversing agent, and anti-CD25 (aCD25), a cell surface binding antibody, to enhance primary NK cell function against HIV and cancer. We utilize a nanoemulsion synthesis scheme to encapsulate both prostratin and aCD25 within the PLGA NDs (termed Pro-aCD25-NDs). Physicochemical characterization studies of the NDs demonstrated that our synthesis scheme resulted in stable and monodisperse Pro-aCD25-NDs. The NDs successfully released both active prostratin and anti-CD25, and with controllable release kinetics. When Pro-aCD25-NDs were administered in an in vitro model of latent HIV and acute T cell leukemia using J-Lat 10.6 cells, the NDs were observed to prime J-Lat cells resulting in significantly increased NK cell-mediated cytotoxicity compared to free prostratin plus anti-CD25, and other controls. These findings demonstrate the feasibility of using our Pro-aCD25-NDs to prime target cells for enhancing the cytotoxicity of NK cells as antiviral or antitumor agents.

16.
Int J Hyperthermia ; 37(3): 34-49, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426992

RESUMO

Immune checkpoint blockade (ICB) comprising monoclonal antibodies (mAbs) against immune 'checkpoints', such as CTLA-4 and the PD1/PDL1 axis have dramatically improved clinical outcomes for patients with cancer. However, ICB by itself has failed to provide benefit in a wide range of solid tumors, where recurrence still occurs with high incidence. These poor response rates may be due to the therapeutic shortcomings of ICB; namely, a lack of cancer-specific cytotoxicity and ability to debulk tumors. To overcome these limitations, effective ICB therapy may require the combination with other complementary therapeutic platforms. Here, we propose that photothermal therapy (PTT) is an ideal therapeutic modality for combination with ICB because it can generate both tumor-specific cytotoxicity and immunogenicity. PTT elicits these specific effects because it is a localized thermal ablation technique that utilizes light-responsive nanoparticles activated by a wavelength-matched laser. While ICB immunotherapy alone improves cancer immunogenicity but does not generate robust antitumor cytotoxicity, nanoparticle-based PTT elicits targeted and controlled cytotoxicity but sub-optimal long-term immunogenicity. Thus, the two platforms offer complementary and potentially synergistic antitumor effects, which will be detailed in this review. We highlight three classes of nanoparticles used as agents of PTT (i.e., metallic inorganic nanoparticles, carbon-based nanoparticles and organic dyes), and illustrate the potential for nanoparticle-based PTT to potentiate the effects of ICB in preclinical models. Through this discussion, we aim to present PTT combined with ICB as a potent synergistic combination treatment for diverse cancer types currently refractory to ICB as well as PTT monotherapies.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias/tratamento farmacológico , Terapia Fototérmica
17.
J Environ Manage ; 247: 57-66, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229786

RESUMO

Three material engineering strategies in the form of doping (Boron-doping), nanostructuring (nanosheet (NS) formation) and decorating with plasmonic nanoparticles (loading with Ag metal), were integrated to improve the photocatalytic activity of graphitic carbon nitride (gC3N4). Concentrations of B-doping and Ag-loading were optimized to maximize the catalytic performance in the final nanocomposite of Ag-loaded B-doped gC3N4 NS. Combined effect of all three strategies successfully produced over 5 times higher rate towards degradation of organic dye pollutant, when compared to unmodified bulk gC3N4. Detailed characterization results revealed that incorporation of B in gC3N4 matrix reduces the band gap to increase the visible light absorption, while specific surface area is significantly enhanced upon formation of NS. Decoration of Ag nanoparticles (NPs) on B-doped gC3N4 NS assists in fast transfer of photogenerated electrons from gC3N4 to Ag NPs owing to the interfacial electric field across the junctions and thus reduces the recombination process. Investigations on individual strategies revealed that decoration of Ag NPs to induce better charge separation, is the most effective route for enhancing the photocatalytic activity.


Assuntos
Grafite , Nanopartículas Metálicas , Catálise , Luz , Prata
18.
Clin Cancer Res ; 25(14): 4400-4412, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31010834

RESUMO

PURPOSE: The ability of natural killer (NK) cells to lyse allogeneic targets, without the need for explicit matching or priming, makes them an attractive platform for cell-based immunotherapy. Umbilical cord blood is a practical source for generating banks of such third-party NK cells for "off-the-shelf" cell therapy applications. NK cells are highly cytolytic, and their potent antitumor effects can be rapidly triggered by a lack of HLA expression on interacting target cells, as is the case for a majority of solid tumors, including neuroblastoma. Neuroblastoma is a leading cause of pediatric cancer-related deaths and an ideal candidate for NK-cell therapy. However, the antitumor efficacy of NK cells is limited by immunosuppressive cytokines in the tumor microenvironment, such as TGFß, which impair NK cell function and survival. EXPERIMENTAL DESIGN: To overcome this, we genetically modified NK cells to express variant TGFß receptors, which couple a mutant TGFß dominant-negative receptor to NK-specific activating domains. We hypothesized that with these engineered receptors, inhibitory TGFß signals are effectively converted to activating signals. RESULTS: Modified NK cells exhibited higher cytotoxic activity against neuroblastoma in a TGFß-rich environment in vitro and superior progression-free survival in vivo, as compared with their unmodified controls. CONCLUSIONS: Our results support the development of "off-the-shelf" gene-modified NK cells, that overcome TGFß-mediated immune evasion, in patients with neuroblastoma and other TGFß-secreting malignancies.


Assuntos
Engenharia Genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neuroblastoma/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biomater Sci ; 7(5): 1875-1887, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30789175

RESUMO

We describe the synthesis of CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) that function as a nanoimmunotherapy for neuroblastoma, a common childhood cancer. These CpG-PBNPs increase the antigenicity and adjuvanticity of the treated tumors, ultimately driving robust antitumor immunity through a multi-pronged mechanism. CpG-PBNPs are synthesized using a facile layer-by-layer coating scheme resulting in nanoparticles that exhibit monodisperse size distributions and multiday stability without cytotoxicity. The strong intrinsic absorption of PBNPs in the CpG-PBNPs enables ablative photothermal therapy (CpG-PBNP-PTT) that triggers tumor cell death, as well as the release of tumor antigens to increase antigenicity. Simultaneously, the CpG coating functions as an exogenous molecular adjuvant that complements the endogenous adjuvants released by the CpG-PBNP-PTT (e.g. ATP, calreticulin, and HMGB1). In cell culture, coating NPs with CpG increases immunogenicity while maintaining the photothermal activity of PBNPs. When administered in a syngeneic, Neuro2a-based, murine model of neuroblastoma, CpG-PBNP-PTT results in complete tumor regression in a significantly higher proportion (70% at 60 days) of treated animals relative to controls. Furthermore, the long-term surviving, CpG-PBNP-PTT-treated animals reject Neuro2a rechallenge, suggesting that this therapy generates immunological memory. Our findings point to the importance of simultaneous cytotoxicity, antigenicity, and adjuvanticity to generate robust and persistent antitumor immune responses against neuroblastoma.


Assuntos
Ferrocianetos/química , Ferrocianetos/imunologia , Nanopartículas/química , Neuroblastoma/patologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Neuroblastoma/imunologia , Oligodesoxirribonucleotídeos/química , Fototerapia
20.
Bioconjug Chem ; 30(3): 552-560, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30779553

RESUMO

We report the generation of magnetically responsive, cord blood-derived natural killer (NK) cells using iron oxide nanoparticles (IONPs). NK cells are a promising immune cell population for cancer cell therapy as they can target and lyse target tumor cells without prior education. However, NK cells cannot home to disease sites based on antigen recognition, instead relying primarily on external stimuli and chemotactic gradients for transport. Hence, we hypothesized that conjugating IONPs onto the surface of NK cells provides an added feature of magnetic homing to the NK cells, improving their therapeutic function. We describe a robust design for conjugating the IONPs onto the surface of NK cells, which maintains their intrinsic phenotype and function. The conferred magnetic-responsiveness is utilized to improve the cytolytic function of the NK cells for target cells in 2D and 3D models. These findings demonstrate the feasibility of improving NK cell homing and therapeutic efficacy with our NK:IONP "biohybrid".


Assuntos
Sangue Fetal/citologia , Células Matadoras Naturais/citologia , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/imunologia , Células Imobilizadas/transplante , Humanos , Imunoterapia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Nanopartículas de Magnetita/uso terapêutico , Nanomedicina , Neoplasias/imunologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA