Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(8): 1179-1187, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386282

RESUMO

Microtubules, a critical component of the cytoskeleton, carry post-translational modifications (PTMs) that are important for the regulation of key cellular processes. Long-lived microtubules, in neurons particularly, exhibit both detyrosination of α-tubulin and polyglutamylation. Dysregulation of these PTMs can result in developmental defects and neurodegeneration. Owing to a lack of tools to study the regulation and function of these PTMs, the mechanisms that govern such PTM patterns are not well understood. Here we produce fully functional tubulin carrying precisely defined PTMs within its C-terminal tail. We ligate synthetic α-tubulin tails-which are site-specifically glutamylated-to recombinant human tubulin heterodimers by applying a sortase- and intein-mediated tandem transamidation strategy. Using microtubules reconstituted with these designer tubulins, we find that α-tubulin polyglutamylation promotes its detyrosination by enhancing the activity of the tubulin tyrosine carboxypeptidase vasohibin/small vasohibin-binding protein in a manner dependent on the length of polyglutamyl chains. We also find that modulating polyglutamylation levels in cells results in corresponding changes in detyrosination, corroborating the link between the detyrosination cycle to polyglutamylation.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Ligação Proteica
2.
STAR Protoc ; 3(2): 101320, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496777

RESUMO

Microtubules are dynamic polymers where tubulin exchanges not only at the ends but also all along the microtubule shaft. In vitro reconstitutions are a vital approach to study microtubule tip dynamics, while direct observation of shaft dynamics is challenging. Here, we describe a dual-color in vitro assay to visualize microtubule shaft dynamics using purified, labeled bovine brain tubulin. With this assay, we can quantitatively address how proteins or small molecules impact the dynamics at the microtubule shaft. For complete details on the use and execution of this protocol, please refer to Andreu-Carbó et al. (2022).


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Bovinos , Microtúbulos/metabolismo , Polímeros/metabolismo , Projetos de Pesquisa , Tubulina (Proteína)/metabolismo
3.
Dev Cell ; 57(1): 5-18.e8, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34883065

RESUMO

Tubulin dimers assemble into dynamic microtubules, which are used by molecular motors as tracks for intracellular transport. Organization and dynamics of the microtubule network are commonly thought to be regulated at the polymer ends, where tubulin dimers can be added or removed. Here, we show that molecular motors running on microtubules cause exchange of dimers along the shaft in vitro and in cells. These sites of dimer exchange act as rescue sites where depolymerizing microtubules stop shrinking and start re-growing. Consequently, the average length of microtubules increases depending on how frequently they are used as motor tracks. An increase of motor activity densifies the cellular microtubule network and enhances cell polarity. Running motors leave marks in the shaft, serving as traces of microtubule usage to organize the polarity landscape of the cell.


Assuntos
Cinesinas/fisiologia , Microtúbulos/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/fisiologia , Polaridade Celular/fisiologia , Células HeLa , Humanos , Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/fisiologia , Tubulina (Proteína)/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA