Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1620: 113-128, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28540703

RESUMO

Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. Here, we describe a high-throughput platform to design and produce multiple synthetic genes (<500 bp) for recombinant expression in Escherichia coli. This pipeline includes an innovative codon optimization algorithm that designs DNA sequences to maximize heterologous protein production in different hosts. The platform is based on a simple gene synthesis method that uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides. This technology incorporates an accurate, automated and cost-effective ligase-independent cloning step to directly integrate the synthetic genes into an effective E. coli expression vector. High-throughput production of synthetic genes is of increasing relevance to allow exploring the biological function of the extensive genomic and meta-genomic information currently available from various sources.


Assuntos
Genes Sintéticos/genética , Ensaios de Triagem em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Proteínas Recombinantes/genética , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica/genética , Proteínas Recombinantes/biossíntese
2.
Microb Cell Fact ; 16(1): 4, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28093085

RESUMO

BACKGROUND: Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. RESULTS: The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. CONCLUSIONS: This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.


Assuntos
Endopeptidases/metabolismo , Escherichia coli/genética , Biossíntese Peptídica , Peptídeos/genética , Peçonhas/biossíntese , Peçonhas/genética , Animais , Biotecnologia/métodos , Clonagem Molecular , Dissulfetos/química , Endopeptidases/química , Vetores Genéticos , Ensaios de Triagem em Larga Escala , Oxirredução , Peptídeos/química , Peptídeos/isolamento & purificação , Periplasma/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Peçonhas/química , Peçonhas/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298375

RESUMO

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulossomas/química , Celulossomas/genética , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica , Ruminococcus/química , Ruminococcus/genética
4.
Mol Biotechnol ; 58(4): 232-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921189

RESUMO

A thermostable, alkaline rhamnogalacturonan lyase (RG lyase) CtRGLf, of family 11 polysaccharide lyase from Clostridium thermocellum was cloned, expressed, purified and biochemically characterised. Both, the full-length CtRGLf (80 kDa) protein and its truncated derivative CtRGL (63.9 kDa) were expressed as soluble proteins and displayed maximum activity against rhamnogalacturonan I (RG I). CtRGLf showed maximum activity at 70 °C, while CtRGL at 60 °C. Both enzymes showed maximum activity at pH 8.5. CtRGLf and CtRGL do not show higher activity on substrates with high ß-D-galactopyranose (D-Galp) substitution, this catalytic property deviates from that of some earlier characterised RG lyases which prefer substrates with high D-Galp substitution. The enzyme activity of CtRGLf and CtRGL was enhanced by 1.5 and 1.3 fold, respectively, in the presence of 3 mM of Ca(2+) ions. The TLC analysis of the degraded products of RG I, released by the action of CtRGLf and CtRGL revealed the production of RG oligosaccharides as major products confirming their endolytic activity.


Assuntos
Clostridium thermocellum/enzimologia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Catálise , Clonagem Molecular , Clostridium thermocellum/genética , Pectinas/metabolismo , Especificidade por Substrato
5.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 958-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249681

RESUMO

Ruminant herbivores meet their carbon and energy requirements from a symbiotic relationship with cellulosome-producing anaerobic bacteria that efficiently degrade plant cell-wall polysaccharides. The assembly of carbohydrate-active enzymes (CAZymes) into cellulosomes enhances protein stability and enzyme synergistic interactions. Cellulosomes comprise diverse CAZymes displaying a modular architecture in which a catalytic domain is connected, via linker sequences, to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs direct the appended catalytic modules to their target substrates, thus facilitating catalysis. The genome of the ruminal cellulolytic bacterium Ruminococcus flavefaciens strain FD-1 contains over 200 modular proteins containing the cellulosomal signature dockerin module. One of these is an endoglucanase Cel5A comprising two family 5 glycoside hydrolase catalytic modules (GH5) flanking an unclassified CBM (termed CBM-Rf2) and a C-terminal dockerin. This novel CBM-Rf2 has been purified and crystallized, and data from cacodylate-derivative crystals were processed to 1.02 and 1.29 Šresolution. The crystals belonged to the orthorhombic space group P212121. The CBM-Rf2 structure was solved by a single-wavelength anomalous dispersion experiment at the As edge.


Assuntos
Proteínas de Bactérias/química , Celulase/química , Ruminococcus/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Celulase/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ruminococcus/enzimologia , Alinhamento de Sequência
6.
PLoS One ; 10(2): e0116787, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658912

RESUMO

The cloning, expression and characterization of three cellulosomal pectinolytic enzymes viz., two variants of PL1 (PL1A and PL1B) and PL9 from Clostridium thermocellum was carried out. The comparison of the primary sequences of PL1A, PL1B and PL9 revealed that these proteins displayed considerable sequence similarities with family 1 and 9 polysaccharide lyases, respectively. PL1A, PL1B and PL9 are the putative catalytic domains of protein sequence ABN54148.1 and ABN53381.1 respectively. These two protein sequences also contain putative carbohydrate binding module (CBM) and type-I dockerin. The associated putative CBM of PL1A showed strong homology with family 6 CBMs while those of PL1B and PL9 showed homology with family 35 CBMs. Recombinant derivatives of these three enzymes showed molecular masses of approximately 34 kDa, 40 kDa and 32 kDa for PL1A, PL1B and PL9, respectively. PL1A, PL1B and PL9 displayed high activity toward polygalacturonic acid and pectin (up to 55% methyl-esterified) from citrus fruits. However, PL1B showed relatively higher activity towards 55% and 85% methyl-esterified pectin (citrus). PL1A and PL9 showed higher activity on rhamnogalacturonan than PL1B. Both PL1A and PL9 displayed maximum activity at pH 8.5 with optimum temperature of 50°C and 60°C respectively. PL1B achieved highest activity at pH 9.8, under an optimum temperature of 50°C. PL1A, PL1B and PL9 all produced two or more unsaturated galacturonates from pectic substrates as displayed by TLC analysis confirming that they are endo-pectate lyase belonging to family 1 and 9, respectively. This report reveals that pectinolytic activity displayed by Clostridium thermocellum cellulosome is coordinated by a sub-set of at least three multi-modular enzymes.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/enzimologia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sequência de Bases , Cromatografia em Camada Fina , Primers do DNA/genética , Escherichia coli , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Pectinas/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência , Temperatura
7.
J Agric Food Chem ; 62(30): 7496-506, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25010714

RESUMO

Anaerobic cellulolytic bacteria organize a comprehensive range of cellulases and hemicellulases in high molecular weight multienzyme complexes termed cellulosomes. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesins and dockerins. This paper reports the production of mini-cellulosomes containing one (GH16-1C) or three (GH16-3C) copies of Clostridium thermocellum glucanase 16A (CtGlc16A). Barley ß-1,3-1,4-glucans are known to be antinutritive for monogastric animals, particularly for poultry. GH16-1C and GH16-3C were used to supplement barley-based diets for broilers. The data revealed that the two mini-cellulosomes effectively improved the nutritive value of barley-based diets for broilers. Analysis of mini-cellulosome molecular integrity revealed that linker sequences separating protein domains in scaffoldins and cellulosomal catalytic units are highly susceptible to proteolytic attack in vivo. The data suggest that linker protection could result in further improvements in enzyme efficacy to improve the nutritive value of barley-based diets for monogastric animals.


Assuntos
Ração Animal , Celulossomas/química , Glicosídeo Hidrolases/química , Hordeum/química , Valor Nutritivo , Animais , Galinhas , Clonagem Molecular , Clostridium thermocellum/enzimologia , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Appl Environ Microbiol ; 78(14): 4781-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22562994

RESUMO

In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted ß-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of ß-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.


Assuntos
Clostridium thermocellum/enzimologia , Mananas/metabolismo , Manosidases/metabolismo , Sequência de Aminoácidos , Carboidratos/química , Clostridium thermocellum/química , Clostridium thermocellum/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Galactanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Manosidases/química , Manosidases/genética , Dados de Sequência Molecular , Gomas Vegetais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
Biochemistry ; 49(29): 6193-205, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20496884

RESUMO

The deconstruction of the plant cell wall is an important biological process that is attracting considerable industrial interest, particularly in the bioenergy sector. Enzymes that attack the plant cell wall generally contain one or more noncatalytic carbohydrate binding modules (CBMs) that play an important targeting function. While CBMs that bind to the backbones of plant structural polysaccharides have been widely described, modules that recognize components of the vast array of decorations displayed on these polymers have been relatively unexplored. Here we show that a family 35 CBM member (CBM35), designated CtCBM35-Gal, binds to alpha-D-galactose (Gal) and, within the context of the plant cell wall, targets the alpha-1,6-Gal residues of galactomannan but not the beta-D-Gal residues in xyloglucan. The crystal structure of CtCBM35-Gal reveals a canonical beta-sandwich fold. Site-directed mutagenesis studies showed that the ligand is accommodated within the loops that connect the two beta-sheets. Although the ligand binding site of the CBM displays significant structural similarity with calcium-dependent CBM35s that target uronic acids, subtle differences in the conformation of conserved residues in the ligand binding site lead to the loss of metal binding and uronate recognition. A model is proposed in which the orientation of the pair of aromatic residues that interact with the two faces of the Gal pyranose ring plays a pivotal role in orientating the axial O4 atom of the ligand toward Asn140, which is invariant in CBM35. The ligand recognition site of exo-CBM35s (CBM35-Gal and the uronic acid binding CBM35s) appears to overlap with that of CBM35-Man, which binds to the internal regions of mannan, a beta-polymer of mannose. Using site-directed mutagenesis, we show that although there is conservation of several functional residues within the binding sites of endo- and exo-CBM35s, the endo-CBM does not utilize Asn113 (equivalent to Asn140 in CBM35-Gal) in mannan binding, despite the importance of the equivalent residue in ligand recognition across the CBM35 and CBM6 landscape. The data presented in this report are placed within a wider phylogenetic context for the CBM35 family.


Assuntos
Proteínas de Bactérias/química , Clostridium thermocellum/enzimologia , Galactose/química , Mananas/química , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Domínio Catalítico , Parede Celular/química , Cristalografia por Raios X , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Plantas/química , Estrutura Secundária de Proteína
10.
FEMS Microbiol Lett ; 300(1): 48-57, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19751219

RESUMO

Noncatalytic carbohydrate-binding modules (CBMs), which are found in a variety of carbohydrate-degrading enzymes, have been grouped into sequence-based families. CBMs, by recruiting their appended enzymes onto the surface of the target substrate, potentiate catalysis particularly against insoluble substrates. Family 6 CBMs (CBM6s) display unusual properties in that they present two potential ligand-binding sites termed clefts A and B, respectively. Cleft B is located on the concave surface of the beta-sandwich fold while cleft A, the more common binding site, is formed by the loops that connect the inner and the outer beta-sheets. Here, we report the biochemical properties of CBM6-1 from Cellvibrio mixtus CmCel5A. The data reveal that CBM6-1 specifically recognizes beta1,3-glucans through residues located both in cleft A and in cleft B. In contrast, a previous report showed that a CBM6 derived from a Bacillus halodurans laminarinase binds to beta1,3-glucans only in cleft A. These studies reveal a different mechanism by which a highly conserved protein platform can recognize beta1,3-glucans.


Assuntos
Proteínas de Bactérias/química , Cellvibrio/metabolismo , Glucanos/metabolismo , Receptores de Superfície Celular/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cellvibrio/química , Cellvibrio/genética , Glucanos/química , Dados de Sequência Molecular , Família Multigênica , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/isolamento & purificação , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Biochem J ; 424(3): 375-84, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19758121

RESUMO

Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold. In general, type I dockerins contain two distinct cohesin-binding interfaces that appear to display identical ligand specificities. Inspection of the C. thermocellum genome reveals 72 dockerin-containing proteins. In four of these proteins, Cthe_0258, Cthe_0435, Cthe_0624 and Cthe_0918, there are significant differences in the residues that comprise the two cohesin-binding sites of the type I dockerin domains. In addition, a protein of unknown function (Cthe_0452), containing a C-terminal cohesin highly similar to the equivalent domains present in C. thermocellum-integrating protein (CipA), was also identified. In the present study, the ligand specificities of the newly identified cohesin and dockerin domains are described. The results revealed that Cthe_0452 is located at the C. thermocellum cell surface and thus the protein was renamed as OlpC. The dockerins of Cthe_0258 and Cthe_0435 recognize, preferentially, the OlpC cohesin and thus these enzymes are believed to be predominantly located at the surface of the bacterium. By contrast, the dockerin domains of Cthe_0624 and Cthe_0918 are primarily cellulosomal since they bind preferentially to the cohesins of CipA. OlpC, which is a relatively abundant protein, may also adopt a 'warehouse' function by transiently retaining cellulosomal enzymes at the cell surface before they are assembled on to the multienzyme complex.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridium thermocellum/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Parede Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Clostridium thermocellum/genética , Eletroforese em Gel de Poliacrilamida , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Termodinâmica , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA