RESUMO
SARS-CoV-2 has spread throughout the world since 2019, changing in its genome and leading to the appearance of new variants. This gave it different evolutionary advantages, such as greater infectivity and/or a greater ability to avoid the immune response, which could lead to an increased severity of COVID-19 cases. There is no consistent information about the viral load that occurs in infection with the different SARS-CoV-2 variants, hence, in this study we quantify the viral load of more than 16,800 samples taken from the Mexican population with confirmed diagnosis of COVID-19 and we analyze the relation between different demographic and disease variables. We detected that the viral load caused by different variants differs only in the first two days after the onset of symptoms, being higher when infections are caused by the delta variant and lower when caused by omicron. Furthermore, the viral load appears to be higher in outpatients compared to hospitalized patients or in cases of death. On the other hand, no differences were found in the viral load produced in vaccinated and unvaccinated patients, nor did it differ between genders.
RESUMO
Abdominal obesity is highly prevalent in Mexico and has a poor prognosis in terms of the severity of coronavirus disease (COVID-19) and low levels of antibodies induced by infection and vaccination. We evaluated the humoral immune response induced by COVID-19 and five different vaccination schedules in Mexican individuals with abdominal obesity and the effects of other variables. This prospective longitudinal cohort study included 2084 samples from 389 participants. The levels of anti-S1/S2 and anti-RBD IgG antibodies were measured at various time points after vaccination. A high prevalence of hospitalization and oxygen use was observed in individuals with abdominal obesity (AO) who had COVID-19 before vaccination; however, they also had high levels of anti-S1/S2 and anti-RBD-neutralizing IgG antibodies. The same was true for vaccination-induced antibody levels. However, their longevity was low. Interestingly, we did not observe significant differences in vaccine reactogenicity between abdominally obese and abdominally non-obese groups. Finally, individuals with a higher body mass index, older age, and previous COVID-19 had higher levels of antibodies induced by COVID-19 and vaccination. Therefore, it is important to evaluate other immunological and inflammatory factors to better understand the pathogenesis of COVID-19 in the presence of risk factors and to propose effective vaccination schedules for vulnerable populations.
RESUMO
Obesity is associated with an increased risk of contracting infections. This study aimed to estimate the risk of COVID-19 infection associated with obesity and to assess its role in the specific antibody response against SARS-CoV-2 in 2021. This study included 980 participants from the State of Mexico who participated in a serological survey where they were tested for SARS-CoV-2 IgG anti-S1/S2 and anti-RBD antibodies and asked for height, weight, and previous infection data via a questionnaire. Of the cohort of 980 participants, 451 (46.02%) were seropositive at the time of recruitment (45.2% symptomatic and 54.8% asymptomatic). The risk of SARS-CoV-2 infection with obesity was 2.18 (95% CI: 1.51-3.16), 2.58 (95% CI: 1.63-4.09), and 1.88 (95% CI: 1.18-2.98) for seropositive, asymptomatic, and symptomatic individuals, respectively, compared to those with normal weight. Anti-S1/S2 and anti-RBD IgG antibodies tended to be higher in overweight and obese participants in the seropositive group and stratified by different obesity classes. Additionally, there was a positive correlation between anti-S1/S2 and anti-RBD IgG antibodies and BMI in both men and women in the seropositive group. Obesity is an independent risk factor for SARS-CoV-2 infection when adjusted for confounding variables; however, the relationship between BMI and anti-S1/S2 and anti-RBD IgG antibody levels differed markedly in the presence or absence of symptoms.
RESUMO
SARS-CoV-2 is the causal agent of COVID-19; the first report of SARS-CoV-2 infection was in December 2019 in Wuhan, China. This virus has since caused the largest pandemic in history, and the number of deaths and infections has been significant. Nevertheless, the development of vaccines has helped to reduce both deaths and infections. Comorbidities such as diabetes, hypertension, heart and lung diseases, and obesity have been identified as additional risk factors for infection and the progression of COVID-19. Additionally, latent toxoplasmosis has been reported to be a risk factor for acquiring COVID-19 in some studies, but other studies have suggested a negative association between these two infections. Furthermore, in patients after vaccination or with COVID-19 and coinfection, an increase in the lethality and mortality of toxoplasmosis has been observed. Therefore, the objective of the current study is to determine the association of toxoplasmosis with COVID-19 in patients diagnosed with COVID-19. Serum samples from 384 patients previously diagnosed with COVID-19 using IgG antibodies against the S1/S2 antigens of SARS-CoV-2 were collected. Subsequently, anti-Toxoplasma IgG and IgM antibodies were analyzed with ELISA. Statistical analysis was performed using SPSS Version 20.0 frequencies, percentages, 2 × 2 tables, and the Pearson correlation coefficient. IgG and IgM anti-Toxoplasma antibodies were positive in 105/384 (27.34%) and (26/191) 13.6% of patients, respectively. The positivity for both infections was higher in patients aged >40 years old. Subjects who were overweight or obese were mainly positive for both IgG antibodies against S1/S2 SARS-CoV-2 and Toxoplasma antibodies. In conclusion, the coinfection rate was 21.7%. The prevalence of S1/S2 SARS-CoV-2 was 308/384 (80.2%), and the percentage of Toxoplasma antibodies was 27.34%.
RESUMO
PURPOSE: The Omicron subvariant BA.1 of SARS-CoV-2 was first detected in November 2021 and quickly spread worldwide, displacing the Delta variant. In this work, a characterization of the spread of this variant in Mexico is presented. METHODS: The time to fixation of BA.1, the diversity of Delta sublineages, the population density, and the level of virus circulation during the inter-wave interval were determined to analyze differences in BA.1 spread. RESULTS: BA.1 began spreading during the first week of December 2021 and became dominant in the next three weeks, causing the fourth COVID-19 epidemiological surge in Mexico. Unlike previous variants, BA.1 did not exhibit a geographically distinct circulation pattern. However, a regional difference in the speed of the replacement of the Delta variant was observed. CONCLUSIONS: Viral diversity and the relative abundance of the virus in a particular area around the time of the introduction of a new lineage seem to have influenced the spread dynamics, in addition to population density. Nonetheless, if there is a significant difference in the fitness of the variants, or if the time allowed for the competition is sufficiently long, it seems the fitter virus will eventually become dominant, as observed in the eventual dominance of the BA.1.x variant in Mexico.
Assuntos
COVID-19 , Epidemias , Humanos , México/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2/genéticaRESUMO
The WHO has approved the use of several vaccines during the COVID-19 pandemic; experience over the last 2 years has indicated that dose demand can only be covered using more than one design. Therefore, having scientific evidence of the performance of the different vaccines applied in a country is highly relevant. In Mexico, 5 vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were used, allowing a cohort study to analyze the generation of anti-S1/S2 IgG antibodies and anti-RBD antibodies with neutralizing activity at 0, 21, 90, and 180 days after vaccination. Five groups of participants were formed on the basis of the type of vaccine received and were divided on the basis of whether they previously had or did not have COVID-19. After completing the vaccination schedule, the seroprevalence was 95.5, 97.5, 81.0, 95.2, and 90.0% (BNT162b2, AZD1222, Convidecia, Sputnik V, and CoronaVac, respectively). Among the participants without COVID-19 prior to vaccination, the largest amount of antibodies in the 90-day period was observed in the BNT162b2 group, and the amount of antibodies in the Sputnik V group decreased the least over time. Even though the percentages of seroconversion obtained in this study were lower than those currently reported in other parts of the world, the tested vaccines are able, in most cases, to induce a good production of IgG antibodies anti-S1/S2 and neutralizing capacity. The fact that there are people who have not produced antibodies during the study leaves open some questions that must be investigated to avoid the appearance of serious cases of COVID-19. IMPORTANCE Since the start of the vaccination programs against COVID-19 in 2020, it was evident that due to global shortages, the demand for the dose required in Mexico could only be covered by acquiring different vaccines. Therefore, determining the effectiveness of these and the longevity of acquired immunity is extremely important in a scenario where SARS-CoV-2 circulation becomes endemic and booster doses are required periodically. Our data reveal significant differences both in the generation of antibodies as well as in their longevity for the vaccines applied in the country but suggest that, in general, the Mexican population can reach a high capacity to neutralize the virus, therefore, regarding less the variant for which they were designed.
Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Imunoglobulina G , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacina BNT162 , Estudos de Coortes , México/epidemiologia , Pandemias , Estudos Soroepidemiológicos , Vacinação , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
Background: SARS-CoV-2 is a coronavirus described for the first time in China, in December 2019. This virus can cause a disease with a very variable spectrum that ranges from asymptomatic cases to deaths. The most severe cases are normally associated with comorbidities and with the age of the patient. However, there are patients who are not part of these risk groups and develop severe cases. Objetive: To determine the association between coinfections by SARS-CoV-2 and other respiratory viruses and their clincal outcome. Material and methods: RT-qPCR was performed to determine the presence of 16 respiratory viruses in 103 confirmed COVID-19 cases. Demographic and comorbid data were collected, and statistical analyzes were performed to determine associations with severity. Results: Of the 103 analyzed cases, 14 (13.6%) presented a coinfection, of these, 92% did not require hospitalization, even in those cases in which the patient presented advanced age and some comorbidities. Conclusions: These results suggest that coinfection of SARS-CoV-2 and other respiratory viruses is not related to a more severe form of COVID-19 and, in some cases, depending on the virus involved, it could even lead to a better prognosis. These findings lay the foundations for the development of new studies that could determine the biological mechanism of this phenomenon.
Introducción: el SARS-CoV-2 es un coronavirus que fue descrito por primera vez en diciembre de 2019 en Wuhan, China. Este virus causa una enfermedad que varía en un espectro de severidad que va desde casos asintomáticos hasta defunciones. Los casos más severos se asocian normalmente con algunas comorbilidades y con la edad del paciente. Sin embargo, existen pacientes que no son parte de estos grupos de riesgo y aun así desarrollan casos graves. Objetivo: determinar la asociación entre las coinfecciones por SARS-CoV-2 y otros virus respiratorios y su desenlace clínico. Material y métodos: se realizó RT-qPCR para determinar la presencia de 16 virus respiratorios en 103 casos confirmados de COVID-19. Se recolectaron datos demográficos y de comorbilidades, y se realizaron análisis estadísticos para determinar asociaciones con gravedad. Resultados: el 13.6% de los casos (14/103) presentaron alguna coinfección, de estos, el 92% nunca requirió ingreso hospitalario, aun en aquellos casos en los que el paciente presentara comorbilidades y edad avanzada. Conclusiones: estos resultados sugieren que la coinfección no está relacionada con un COVID-19 más grave y que, dependiendo del virus involucrado, incluso podría conducir a un mejor pronóstico. Estos hallazgos sientan las bases para nuevos estudios dirigidos a determinar el mecanismo biológico por el cual ocurre este fenómeno y a proponer las estrategias correspondientes para limitar la progresión a casos severos de COVID-19.
Assuntos
COVID-19 , Coinfecção , Coinfecção/epidemiologia , Testes Diagnósticos de Rotina , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2RESUMO
BACKGROUND: With the arrival of chikungunya (CHIKV) and zika (ZIKV) viruses in Mexico, there was a decrease in diagnosed dengue virus (DENV) cases. During the first years of cocirculation (2015-2017), the algorithms established by epidemiological surveillance systems and the installed capacity limited us to one diagnostic test per sample, so there was an underestimation of cases until September 2017, when a multiplex algorithm was implemented. Therefore, the objective of this study was determine the impact of the introduction of CHIKV and ZIKV on the incidence of diagnosed DENV in endemic areas of Mexico, when performing the rediagnosis, using the multiplex algorithm, in samples from the first three years of co-circulation of these arboviruses. METHODOLOGY AND PRINCIPAL FINDINGS: For this, 1038 samples received by the Central Laboratory of Epidemiology between 2015 and 2017 were selected for this work. Viruses were identified by multiplex RT-qPCR, and the χ2 test was used to compare categorical variables. With the new multiplex algorithm, we identified 2.4 times the rate of arbovirosis as originally reported, evidencing an underestimation of the incidence of the three viruses. Even so, significantly less dengue was observed than in previous years. The high incidence rates of chikungunya and Zika coincided with periods of dengue decline. The endemic channel showed that the cases caused by DENV rose again after the circulation of CHIKV and ZIKV decreased. In addition, 23 cases of coinfection were identified, with combinations between all viruses. CONCLUSIONS AND SIGNIFICANCE: The results obtained in this study show for the first time the real impact on the detected incidence of dengue after the introduction of CHIKV and ZIKV in Mexico, the degree of underestimation of these arboviruses in the country, as well as the co-infections between these viruses, whose importance clinical and epidemiological are still unknown.
Assuntos
Febre de Chikungunya/epidemiologia , Coinfecção/epidemiologia , Coinfecção/virologia , Dengue/diagnóstico , Dengue/epidemiologia , Infecção por Zika virus/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Estudos Transversais , Doenças Endêmicas , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Adulto JovemRESUMO
Introducción: el SARS-CoV-2 es un coronavirus que fue descrito por primera vez en diciembre de 2019 en Wuhan, China. Este virus causa una enfermedad que varía en un espectro de severidad que va desde casos asintomáticos hasta defunciones. Los casos más severos se asocian normalmente con algunas comorbilidades y con la edad del paciente. Sin embargo, existen pacientes que no son parte de estos grupos de riesgo y aun así desarrollan casos graves. Objetivo: determinar la asociación entre las coinfecciones por SARS-CoV-2 y otros virus respiratorios y su desenlace clínico. Material y métodos: se realizó RT-qPCR para determinar la presencia de 16 virus respiratorios en 103 casos confirmados de COVID-19. Se recolectaron datos demográficos y de comorbilidades, y se realizaron análisis estadísticos para determinar asociaciones con gravedad. Resultados: el 13.6% de los casos (14/103) presentaron alguna coinfección, de estos, el 92% nunca requirió ingreso hospitalario, aun en aquellos casos en los que el paciente presentara comorbilidades y edad avanzada. Conclusiones: estos resultados sugieren que la coinfección no está relacionada con un COVID-19 más grave y que, dependiendo del virus involucrado, incluso podría conducir a un mejor pronóstico. Estos hallazgos sientan las bases para nuevos estudios dirigidos a determinar el mecanismo biológico por el cual ocurre este fenómeno y a proponer las estrategias correspondientes para limitar la progresión a casos severos de COVID-19.
Background: SARS-CoV-2 is a coronavirus described for the first time in China, in December 2019. This virus can cause a disease with a very variable spectrum that ranges from asymptomatic cases to deaths. The most severe cases are normally associated with comorbidities and with the age of the patient. However, there are patients who are not part of these risk groups and develop severe cases. Objetive: To determine the association between coinfections by SARS-CoV-2 and other respiratory viruses and their clincal outcome. Material and methods: RT-qPCR was performed to determine the presence of 16 respiratory viruses in 103 confirmed COVID-19 cases. Demographic and comorbid data were collected, and statistical analyzes were performed to determine associations with severity. Results: Of the 103 analyzed cases, 14 (13.6%) presented a coinfection, of these, 92% did not require hospitalization, even in those cases in which the patient presented advanced age and some comorbidities. Conclusions: These results suggest that coinfection of SARS-CoV-2 and other respiratory viruses is not related to a more severe form of COVID-19 and, in some cases, depending on the virus involved, it could even lead to a better prognosis. These findings lay the foundations for the development of new studies that could determine the biological mechanism of this phenomenon.
Assuntos
Humanos , Masculino , Feminino , Doenças Respiratórias , Coinfecção , SARS-CoV-2 , COVID-19 , Prognóstico , Grupos de Risco , Estratégias de SaúdeRESUMO
Until recently, the incidence of COVID-19 was primarily estimated using molecular diagnostic methods. However, the number of cases is vastly underreported using these methods. Seroprevalence studies estimate cumulative infection incidences and allow monitoring of transmission dynamics, and the presence of neutralizing antibodies in the population. In February 2020, the Mexican Social Security Institute began conducting anonymous unrelated sampling of residual sera from specimens across the country, excluding patients with fever within the previous two weeks and/or patients with an acute respiratory infection. Sampling was carried out weekly and began 17 days before Mexico's first officially confirmed case. The 24,273 sera obtained were analyzed by chemiluminescent-linked immunosorbent assay (CLIA) IgG S1/S2 and, later, positive cases using this technique were also analyzed to determine the rate of neutralization using the enzyme-linked immunosorbent assay (ELISA). We identified 40 CLIA IgG positive cases before the first official report of SARS-CoV-2 infection in Mexico. The national seroprevalence was 3.5% in February and 33.5% in December. Neutralizing activity among IgG positives patients during overall study period was 86.1%. The extent of the SARS-CoV-2 infection in Mexico is 21 times higher than that reported by molecular techniques. Although the general population is still far from achieving herd immunity, epidemiological indicators should be re-estimated based on serological studies of this type.
RESUMO
BACKGROUND: Acute respiratory infections are the leading cause of morbidity and mortality worldwide. Although a viral aetiological agent is estimated to be involved in up to 80% of cases, the majority of these agents have never been specifically identified. Since 2009, diagnostic and surveillance efforts for influenza virus have been applied worldwide. However, insufficient epidemiological information is available for the many other respiratory viruses that can cause Acute respiratory infections. METHODS: This study evaluated the presence of 14 non-influenza respiratory viruses in 872 pharyngeal exudate samples using RT-qPCR. All samples met the operational definition of a probable case of an influenza-like illness or severe acute respiratory infection and had a previous negative result for influenza by RT-qPCR. RESULTS: The presence of at least one non-influenza virus was observed in 312 samples (35.8%). The most frequent viruses were rhinovirus (RV; 33.0%), human respiratory syncytial virus (HRSV; 30.8%) and human metapneumovirus (HMPV; 10.6%). A total of 56 cases of co-infection (17.9%) caused by 2, 3, or 4 viruses were identified. Approximately 62.5% of all positive cases were in children under 9 years of age. CONCLUSION: In this study, we identified 13 non-influenza respiratory viruses that could occur in any season of the year. This study provides evidence for the prevalence and seasonality of a wide range of respiratory viruses that circulate in Mexico and constitute a risk for the population. Additionally, our data suggest that including these tests more widely in the diagnostic algorithm for influenza may reduce the use of unnecessary antibiotics, reduce the hospitalisation time, and enrich national epidemiological data with respect to the infections caused by these viruses.