Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Commun ; 13(1): 6463, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309498

RESUMO

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/genética , Canadá/epidemiologia , Genoma , Herança Multifatorial/genética , Sequenciamento Completo do Genoma , Predisposição Genética para Doença
2.
Nature ; 586(7827): 80-86, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717741

RESUMO

Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.


Assuntos
Transtorno do Espectro Autista/genética , Expansão das Repetições de DNA/genética , Genoma Humano/genética , Genômica , Sequências de Repetição em Tandem/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Predisposição Genética para Doença , Humanos , Inteligência/genética , Proteínas de Ligação ao Ferro/genética , Masculino , Miotonina Proteína Quinase/genética , Motivos de Nucleotídeos , Polimorfismo Genético , Frataxina
3.
Sci Rep ; 10(1): 10827, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616716

RESUMO

Weill-Marchesani syndrome (WMS) is a rare disorder displaying short stature, brachydactyly and joint stiffness, and ocular features including microspherophakia and ectopia lentis. Brachydactyly and joint stiffness appear less commonly in patients with WMS4 caused by pathogenic ADAMTS17 variants. Here, we investigated a large family with WMS from Newfoundland, Canada. These patients displayed core WMS features, but with proportionate hands that were clinically equivocal for brachydactyly. Whole exome sequencing and autozygosity mapping unveiled a novel pathogenic missense ADAMTS17 variant (c.3068 G > A, p.C1023Y). Sanger sequencing demonstrated variant co-segregation with WMS, and absence in 150 population matched controls. Given ADAMTS17 involvement, we performed deep phenotyping of the patients' hands. Anthropometrics applied to hand roentgenograms showed that metacarpophalangeal measurements of affected patients were smaller than expected for their age and sex, and when compared to their unaffected sibling. Furthermore, we found a possible sub-clinical phenotype involving markedly shortened metacarpophalangeal bones with intrafamilial variability. Transfection of the variant ADAMTS17 into HEK293T cells revealed significantly reduced secretion into the extracellular medium compared to wild-type. This work expands understanding of the molecular pathogenesis of ADAMTS17, clarifies the variable hand phenotype, and underscores a role for anthropometrics in characterizing sub-clinical brachydactyly in these patients.


Assuntos
Proteínas ADAMTS/genética , Braquidactilia , Dedos/anormalidades , Mutação de Sentido Incorreto , Síndrome de Weill-Marchesani/etiologia , Síndrome de Weill-Marchesani/genética , Antropometria , Secreções Corporais , Canadá , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Sequenciamento do Exoma
4.
NPJ Genom Med ; 4: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602316

RESUMO

Copy number variations (CNVs) are implicated across many neurodevelopmental disorders (NDDs) and contribute to their shared genetic etiology. Multiple studies have attempted to identify shared etiology among NDDs, but this is the first genome-wide CNV analysis across autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), and obsessive-compulsive disorder (OCD) at once. Using microarray (Affymetrix CytoScan HD), we genotyped 2,691 subjects diagnosed with an NDD (204 SCZ, 1,838 ASD, 427 ADHD and 222 OCD) and 1,769 family members, mainly parents. We identified rare CNVs, defined as those found in <0.1% of 10,851 population control samples. We found clinically relevant CNVs (broadly defined) in 284 (10.5%) of total subjects, including 22 (10.8%) among subjects with SCZ, 209 (11.4%) with ASD, 40 (9.4%) with ADHD, and 13 (5.6%) with OCD. Among all NDD subjects, we identified 17 (0.63%) with aneuploidies and 115 (4.3%) with known genomic disorder variants. We searched further for genes impacted by different CNVs in multiple disorders. Examples of NDD-associated genes linked across more than one disorder (listed in order of occurrence frequency) are NRXN1, SEH1L, LDLRAD4, GNAL, GNG13, MKRN1, DCTN2, KNDC1, PCMTD2, KIF5A, SYNM, and long non-coding RNAs: AK127244 and PTCHD1-AS. We demonstrated that CNVs impacting the same genes could potentially contribute to the etiology of multiple NDDs. The CNVs identified will serve as a useful resource for both research and diagnostic laboratories for prioritization of variants.

5.
Can J Neurol Sci ; 46(5): 518-526, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31391130

RESUMO

OBJECTIVE: Intracranial aneurysm (IA) is an expansion of the weakened arterial wall that is often asymptomatic until rupture, resulting in subarachnoid hemorrhage. Here we describe the high prevalence of familial IA in a cohort of Newfoundland ancestry. We began to investigate the genetic etiology of IA in affected family members, as the inheritance of this disease is poorly understood. METHODS: Whole exome sequencing was completed for a cohort of 12 affected individuals from two multiplex families with a strong family history of IA. A filtering strategy was implemented to identify rare, shared variants. Filtered variants were prioritized based on validation by Sanger sequencing and segregation within the families. RESULTS: In family R1352, six variants passed filtering; while in family R1256, 68 variants remained, so further filtering was pursued. Following validation by Sanger sequencing, top candidates were investigated in a set of population controls, namely, C4orf6 c.A1G (p.M1V) and SPDYE4c.C103T (p.P35S). Neither was detected in 100 Newfoundland control samples. CONCLUSION: Rare and potentially deleterious variants were identified in both families, though incomplete segregation was identified for all filtered variants. Alternate methods of variant prioritization and broader considerations regarding the interplay of genetic and environmental factors are necessary in future studies of this disease.


Prévalence d'anévrismes intracrâniens au sein de familles terre-neuviennes : une analyse clinique et génétique. Objectif : Un anévrisme intracrânien (AI) consiste en une expansion, souvent asymptomatique, d'une paroi artérielle affaiblie. La rupture qui peut s'ensuivre résultera en une hémorragie sous-arachnoïdienne. Nous voulons décrire ici la forte prévalence d'AI au sein de familles terre-neuviennes ayant des ancêtres communs. Nous avons débuté cette étude en étudiant l'étiologie génétique de l'AI chez les membres de ces familles affectés par cette déformation car l'hérédité des AI demeure encore mal comprise. Méthodes : Nous avons tout d'abord procédé au séquençage entier de l'exome d'un groupe de 12 sujets appartenant à deux familles dites « multiplexes ¼ présentant des antécédents notables d'AI. À cet égard, une stratégie de filtrage a été mise de l'avant afin d'identifier des variantes génétiques à la fois peu fréquentes et partagées. Nous avons ensuite privilégié et validé ces variantes filtrées en nous fondant sur la méthode de séquençage et de ségrégation de Sanger. Résultats : Dans la famille R1352, 6 variantes ont été sélectionnées par filtrage alors que 68 variantes l'ont été dans le cas de la famille R1256, ce qui fait que des tâches additionnelles de filtrage ont été menées. Une fois complétée notre validation par la méthode de Sanger, les meilleurs sujets ont fait l'objet d'un travail d'analyse au sein d'un groupe de témoins de la population, à savoir C4orf6 c.A1G (p. M1V) et SPDYE4c.C103T (p. P35S). À cet égard, aucune variante génétique n'a été détectée parmi 100 échantillons de témoins de Terre-Neuve. Conclusion : Bien qu'une ségrégation incomplète ait été effectuée pour toutes les variantes filtrées, des variantes génétiques peu fréquentes et potentiellement délétères ont été détectées au sein de ces deux familles. D'autres méthodes de priorisation des variantes génétiques, de même que des considérations d'ordre plus général en ce qui a trait à l'interaction entre les facteurs génétiques et les facteurs environnementaux, sont nécessaires si l'on veut étudier les AI dans le futur.


Assuntos
Predisposição Genética para Doença/genética , Aneurisma Intracraniano/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terra Nova e Labrador , Linhagem , Projetos Piloto
6.
Dialogues Clin Neurosci ; 19(4): 353-371, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29398931

RESUMO

Autism spectrum disorder (ASD) encompasses a group of neurodevelopmental conditions diagnosed solely on the basis of behavioral assessments that reveal social deficits. Progress has been made in understanding its genetic underpinnings, but most ASD-associated genetic variants, which include copy number variants (CNVs) and mutations in ASD-risk genes, account for no more than 1 % of ASD cases. This high level of genetic heterogeneity leads to challenges obtaining and interpreting genetic testing in clinical settings. The traditional definition of syndromic ASD is a disorder with a clinically defined pattern of somatic abnormalities and a neurobehavioral phenotype that may include ASD. Most have a known genetic cause. Examples include fragile X syndrome and tuberous sclerosis complex. We propose dividing syndromic autism into the following two groups: (i) ASD that occurs in the context of a clinically defined syndrome-recognizing these disorders depends on the familiarity of the clinician with the features of the syndrome, and the diagnosis is typically confirmed by targeted genetic testing (eg, mutation screening of FMR1); (ii) ASD that occurs as a feature of a molecularly defined syndrome-for this group of patients, ASD-associated variants are identified by genome-wide testing that is not hypothesis driven (eg, microarray, whole exome sequencing). These ASD groups cannot be easily clinically defined because patients with a given variant have variable somatic abnormalities (dysmorphism and birth defects). In this article, we review common diagnoses from the above categories and suggest a testing strategy for patients, guided by determining whether the individual has essential or complex ASD; patients in the latter group have multiple morphologic anomalies on physical examination. Finally, we recommend that the syndromic versus nonsyndromic designation ultimately be replaced by classification of ASD according to its genetic etiology, which will inform about the associated spectrum and penetrance of neurobehavioral and somatic manifestations.


El trastorno del espectro autista (TEA) incluye un grupo diverso de cuadros del neurodesarrollo, diagnosticado por los clínicos únicamente en base a evaluaciones conductuales que revelan déficits sociales. Se ha progresado en la comprensión de sus bases genéticas, pero la mayoría de las variantes genéticas asociadas al TEA dan cuenta de no más del 1 % de los casos, y éstas incluyen variabilidad del número de copias (VNC) y mutaciones en los genes de riesgo para el TEA. Este alto nivel de heterogeneidad genética genera un desafío en la obtención e interpretación de las pruebas genéticas en los ambientes clínicos. La definición tradicional de TEA sindromático se refiere a un trastorno con un patrón clínicamente definido de alteraciones somáticas y un fenotipo neuroconductual que incluye el TEA. La mayoría tiene una causa genéticamente conocida y como ejemplos están el síndrome X frágil y el complejo esclerosis tuberosa. Se propone dividir el autismo sindromático en dos grupos: 1) El TEA que ocurre en el contexto de un síndrome definido clínicamente. El reconocimiento de estos trastornos depende de la familiaridad del clínico con las características del síndrome, y el diagnóstico se confirma típicamente por pruebas genéticas específicas (como la evaluación de FMR1) y 2) El TEA que ocurre como una característica del síndrome definido molecularmente. Para este grupo de pacientes, las variantes asociadas con el TEA se identifican mediante pruebas del genoma completo, que no se basan en una hipótesis (como el estudio de microarray o la secuenciación completa de exoma). Estos grupos de TEA no pueden definirse fácil clínicamente porque los pacientes con una variante determinada tienen alteraciones somáticas variables (dimorfismos y defectos del nacimiento). En este artículo se revisan los diagnósticos comunes a partir de las categorías anteriores y se sugiere una estrategia de evaluación de los pacientes dependiendo de si ellos tienen un TEA esencial o complejo; este último grupo tiene múltiples alteraciones morfológicas al examen físico. Por último, se recomienda que la designación de sindromático versus no-sindromático sea reemplazada finalmente por la clasificación de TEA de acuerdo con su etiología genética, la cual dará cuenta del espectro asociado y de la penetrancia de las manifestaciones neuroconductuales y somáticas.


Le trouble du spectre de l'autisme (TSA) est un groupe de maladies neurodéveloppementales dont le diagnostic est établi uniquement sur la base d'évaluations comportementales qui signent des déficits sociaux. La compréhension des fondements génétiques du TSA progresse, mais la plupart des variantes génétiques associées au TSA, comme la variabilité du nombre de copies (VNC) et les mutations des gènes liés au TSA, ne représentent pas plus de 1 % des cas de TSA. Cette hétérogénéité génétique élevée rend difficiles la réalisation et l'interprétation des dépistages génétiques en milieu clinique. La définition traditionnelle du TSA syndromique est un tableau clinique défini, composé d'anomalies somatiques associées à un phénotype neurocomportemental pouvant comprendre le TSA. La plupart ont une cause génétique connue, comme le syndrome de l'X fragile et la sclérose tubéreuse complexe. Nous proposons de diviser l'autisme syndromique en deux groupes : 1) le TSA survenant dans le contexte d'un syndrome cliniquement défini - la reconnaissance de ces troubles dépend de la connaissance du médecin des caractéristiques du syndrome, et le diagnostic est confirmé généralement par des tests génétiques ciblés (par exemple le dépistage d'une mutation du gène FMR1) ; 2) le TSA survenant en tant que caractéristique d'un syndrome moléculairement défini - pour ce groupe de patients, les variantes associées au TSA sont identifiées par un dépistage au niveau du génome entier sans a priori (par exemple puces à ADN, séquençage de l'exome entier). Ces groupes de TSA ne sont pas faciles à définir cliniquement car les patients ayant une variante donnée ont des anomalies somatiques variables (dysmorphisme et anomalies congénitales). Dans cet article, nous examinons les diagnostics courants issus des catégories susmentionnées et suggérons une stratégie de dépistage pour les patients, pour déterminer si leur TSA est essentiel ou complexe, ce dernier groupe ayant des anomalies morphologiques multiples à l'examen clinique. Enfin, nous recommandons que la classification syndromique versus non syndromique soit finalement remplacée par une classification du TSA selon son étiologie génétique, qui renseignera sur le spectre et la pénétrance des manifestations neuro-comportementales et somatiques.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Estudos de Associação Genética , Humanos , Masculino
7.
NPJ Genom Med ; 1: 160271-1602710, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27525107

RESUMO

De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10-10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10-13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10-24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10-9; OR=1.84), of which 15.6% (p=4.3×10-3) and 22.5% (p=7.0×10-5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD.

8.
JAMA ; 314(9): 895-903, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26325558

RESUMO

IMPORTANCE: The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. OBJECTIVE: To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. DESIGN, SETTING, AND PARTICIPANTS: The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). EXPOSURES: All probands underwent CMA, with WES performed for 95 proband-parent trios. MAIN OUTCOMES AND MEASURES: The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. RESULTS: Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. CONCLUSIONS AND RELEVANCE: Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Exoma , Análise em Microsséries/métodos , Técnicas de Diagnóstico Molecular/métodos , Síndrome de Asperger/diagnóstico , Síndrome de Asperger/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Feminino , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Fenótipo , Análise de Sequência de DNA/métodos , Análise de Sequência de Proteína/métodos
9.
J Med Genet ; 52(7): 431-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25951830

RESUMO

PURPOSE AND SCOPE: The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. METHODS OF STATEMENT DEVELOPMENT: Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. RESULTS AND CONCLUSIONS: Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Genética Médica/métodos , Genoma Humano/genética , Análise de Sequência de DNA/métodos , Pesquisa Translacional Biomédica/métodos , Canadá , Doenças Genéticas Inatas/genética , Genética Médica/tendências , Humanos , Análise de Sequência de DNA/tendências , Pesquisa Translacional Biomédica/tendências
10.
Nat Med ; 21(2): 185-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25621899

RESUMO

Autism spectrum disorder (ASD) is genetically heterogeneous, with evidence for hundreds of susceptibility loci. Previous microarray and exome-sequencing studies have examined portions of the genome in simplex families (parents and one ASD-affected child) having presumed sporadic forms of the disorder. We used whole-genome sequencing (WGS) of 85 quartet families (parents and two ASD-affected siblings), consisting of 170 individuals with ASD, to generate a comprehensive data resource encompassing all classes of genetic variation (including noncoding variants) and accompanying phenotypes, in apparently familial forms of ASD. By examining de novo and rare inherited single-nucleotide and structural variations in genes previously reported to be associated with ASD or other neurodevelopmental disorders, we found that some (69.4%) of the affected siblings carried different ASD-relevant mutations. These siblings with discordant mutations tended to demonstrate more clinical variability than those who shared a risk variant. Our study emphasizes that substantial genetic heterogeneity exists in ASD, necessitating the use of WGS to delineate all genic and non-genic susceptibility variants in research and in clinical diagnostics.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Pais , Análise de Sequência de DNA , Irmãos , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino
11.
Hum Genet ; 134(2): 191-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25432440

RESUMO

Copy number variation has emerged as an important cause of phenotypic variation, particularly in relation to some complex disorders. Autism spectrum disorder (ASD) is one such disorder, in which evidence is emerging for an etiological role for some rare penetrant de novo and rare inherited copy number variants (CNVs). De novo variation, however, does not always explain the familial nature of ASD, leaving a gap in our knowledge concerning the heritable genetic causes of this disorder. Extended pedigrees, in which several members have ASD, provide an opportunity to investigate inherited genetic risk factors. In this current study, we recruited 19 extended ASD pedigrees, and, using the Illumina HumanOmni2.5 BeadChip, conducted genome-wide CNV interrogation. We found no definitive evidence of an etiological role for segregating CNVs in these pedigrees, and no evidence that linkage signals in these pedigrees are explained by segregating CNVs. However, a small number of putative de novo variants were transmitted from BAP parents to their ASD offspring, and evidence emerged for a rare duplication CNV at 11p13.3 harboring two putative 'developmental/neuropsychiatric' susceptibility gene(s), GSTP1 and NDUFV1.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 11/genética , Duplicação Gênica , Predisposição Genética para Doença , Glutationa S-Transferase pi/genética , NADH Desidrogenase/genética , Linhagem , Bases de Dados de Ácidos Nucleicos , Conjuntos de Dados como Assunto , Complexo I de Transporte de Elétrons , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Penetrância
12.
Nature ; 515(7526): 209-15, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363760

RESUMO

The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromatina/genética , Predisposição Genética para Doença/genética , Mutação/genética , Sinapses/metabolismo , Transcrição Gênica/genética , Sequência de Aminoácidos , Transtornos Globais do Desenvolvimento Infantil/patologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Exoma/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Rede Nervosa/metabolismo , Razão de Chances
13.
Am J Hum Genet ; 94(6): 809-17, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906018

RESUMO

Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.


Assuntos
Estudos de Associação Genética/métodos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sociedades Científicas/organização & administração , Canadá , Humanos , Mutação , Fenótipo
14.
Hum Mol Genet ; 23(10): 2752-68, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24381304

RESUMO

Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromossomos Humanos Par 9 , Variações do Número de Cópias de DNA , Éxons , Feminino , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Glicoproteínas/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fenótipo , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Risco , Deleção de Sequência , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Adulto Jovem
16.
Am J Hum Genet ; 92(4): 590-7, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23499310

RESUMO

Osteogenesis imperfecta (OI) is a heritable disorder that ranges in severity from death in the perinatal period to an increased lifetime risk of fracture. Mutations in COL1A1 and COL1A2, which encode the chains of type I procollagen, result in dominant forms of OI, and mutations in several other genes result in recessive forms of OI. Here, we describe four recessive-OI-affected families in which we identified causative mutations in wingless-type MMTV integration site family 1 (WNT1). In family 1, we identified a homozygous missense mutation by exome sequencing. In family 2, we identified a homozygous nonsense mutation predicted to produce truncated WNT1. In family 3, we found a nonsense mutation and a single-nucleotide duplication on different alleles, and in family 4, we found a homozygous 14 bp deletion. The mutations in families 3 and 4 are predicted to result in nonsense-mediated mRNA decay and the absence of WNT1. WNT1 is a secreted signaling protein that binds the frizzled receptor (FZD) and the coreceptor low-density lipoprotein-receptor-related protein 5 (LRP5). Biallelic loss-of-function mutations in LRP5 result in recessive osteoporosis-pseudoglioma syndrome with low bone mass, whereas heterozygous gain-of-function mutations result in van Buchem disease with elevated bone density. Biallelic loss-of-function mutations in WNT1 result in a recessive clinical picture that includes bone fragility with a moderately severe and progressive presentation that is not easily distinguished from dominant OI type III.


Assuntos
Genes Recessivos/genética , Mutação/genética , Osteogênese Imperfeita/genética , Proteína Wnt1/genética , Adulto , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Osteogênese Imperfeita/patologia , Linhagem , Adulto Jovem
17.
Hum Mol Genet ; 22(10): 2055-66, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23393157

RESUMO

The GPHN gene codes for gephyrin, a key scaffolding protein in the neuronal postsynaptic membrane, responsible for the clustering and localization of glycine and GABA receptors at inhibitory synapses. Gephyrin has well-established functional links with several synaptic proteins that have been implicated in genetic risk for neurodevelopmental disorders such as autism spectrum disorder (ASD), schizophrenia and epilepsy including the neuroligins (NLGN2, NLGN4), the neurexins (NRXN1, NRXN2, NRXN3) and collybistin (ARHGEF9). Moreover, temporal lobe epilepsy has been linked to abnormally spliced GPHN mRNA lacking exons encoding the G-domain of the gephyrin protein, potentially arising due to cellular stress associated with epileptogenesis such as temperature and alkalosis. Here, we present clinical and genomic characterization of six unrelated subjects, with a range of neurodevelopmental diagnoses including ASD, schizophrenia or seizures, who possess rare de novo or inherited hemizygous microdeletions overlapping exons of GPHN at chromosome 14q23.3. The region of common overlap across the deletions encompasses exons 3-5, corresponding to the G-domain of the gephyrin protein. These findings, together with previous reports of homozygous GPHN mutations in connection with autosomal recessive molybdenum cofactor deficiency, will aid in clinical genetic interpretation of the GPHN mutation spectrum. Our data also add to the accumulating evidence implicating neuronal synaptic gene products as key molecular factors underlying the etiologies of a diverse range of neurodevelopmental conditions.


Assuntos
Sequência de Bases , Proteínas de Transporte/genética , Cromossomos Humanos Par 14/genética , Éxons , Proteínas de Membrana/genética , Esquizofrenia/genética , Convulsões/genética , Deleção de Sequência , Transtorno Autístico , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cromossomos Humanos Par 14/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa , Splicing de RNA/genética , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho , Esquizofrenia/metabolismo , Convulsões/metabolismo , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo
18.
J Med Genet ; 50(3): 163-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335808

RESUMO

BACKGROUND: The contribution of copy-number variation (CNV) to disease has been highlighted with the widespread adoption of array-based comparative genomic hybridisation (aCGH) and microarray technology. Contiguous gene deletions involving ANKRD11 in 16q24.3 are associated with autism spectrum disorder (ASD) and intellectual disability (ID), while 16q24.1 deletions affecting FOXF1 are associated with congenital renal malformations, alveolar capillary dysplasia, and various other abnormalities. The disease associations of deletions in the intervening region, 16q24.2, have only been defined to a limited extent. AIM: To determine whether deletions affecting 16q24.2 are correlated with congenital anomalies. METHODS: 35 individuals, each having a deletion in 16q24.2, were characterised clinically and by aCGH and/or SNP-genotyping microarray. RESULTS: Several of the 35 16q24.2 deletions identified here closely abut or overlap the coding regions of FOXF1 and ANKRD11, two genes that have been previously associated with the disease. 25 patients were reported to have ASD/ID, and three were found to have bilateral hydronephrosis. 14 of the deletions associated with ASD/ID overlap the coding regions of FBXO31 and MAP1LC3B. These same genes and two others, C16orf95 and ZCCHC14, are also included in the area of minimal overlap of the three deletions associated with hydronephrosis. CONCLUSIONS: Our data highlight 16q24.2 as a region of interest for ASD, ID and congenital renal malformations. These conditions are associated, albeit without complete penetrance, with deletions affecting C16orf95, ZCCHC14, MAP1LC3B and FBXO31. The function of each gene in development and disease warrants further investigation.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 16 , Deleção de Genes , Deficiência Intelectual/genética , Rim/anormalidades , Adolescente , Criança , Pré-Escolar , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas Repressoras/genética , Adulto Jovem
19.
BMC Med Genet ; 13: 111, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171239

RESUMO

BACKGROUND: Severe congenital neutropenia type 4 (SCN4) is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3). Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4) is caused by autosomal recessive mutations in SLC45A2. METHODS: We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. RESULTS: The siblings' phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with "partial OCA" in childhood. CONCLUSIONS: This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.


Assuntos
Glucose-6-Fosfatase/genética , Neutropenia/genética , Adulto , Albinismo Oculocutâneo/genética , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Irmãos
20.
Respir Res ; 13: 64, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22853774

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an adult-onset Idiopathic Interstitial Pneumonia (IIP) usually diagnosed between age 50 to 70 years. Individuals with Familial Pulmonary Fibrosis (FPF) have at least one affected first or second-degree relative and account for 0.5-20% of cases. METHODS: We ascertained and collected DNA samples from a large population-based cohort of IPF patients from Newfoundland, Canada. For each proband, a family history was documented and medical records were reviewed. Each proband was classified as familial (28 patients) or sporadic (50 patients) and all 78 probands were screened for variants in four highly penetrant, adult-onset PF genes (SFTPC, SFTPA2, TERT,TERC). RESULTS: Seventy-eight IPF probands were enrolled of whom 28 (35.9%) had a positive family history. These 28 familial patients led to the recruitment of an additional 49 affected relatives (total of 77 FPF patients). By age 60 years, 42% of the familial cohort had been diagnosed with PF compared with only 16% of the sporadic patient collection (χ2 = 8.77, p = 0.003). Mean age of diagnosis in the familial group was significantly younger than the sporadic group (61.4 years vs. 66.6 yrs, p = 0.012) with a wider age range of diagnosis (19-92 years compared with 47-82 years). Thirty-three of 77 (42.8%) FPF patients had a tissue diagnosis and all but five had usual interstitial pneumonia histology. Compared with other published case series, the familial IIP histologies were more homogeneous. Three of 28 familial probands (10.7%) and none of the 50 sporadic probands had pathogenic variants in the four genes tested. All three familial probands had mutations in TERT. Other phenotypes associated with telomerase deficiency were present in these families including cirrhosis, bone marrow hypoplasia and premature graying. Telomere length assays were performed on mutation carriers from two families and confirmed telomere-related deficiency. CONCLUSION: The proportion of familial cases in our cohort is higher than any previously reported estimate and we suggest that this is due to the fact that Newfoundland cohort is ethnically homogeneous and drawn from a founder population. In our patient collection, diagnosis with IPF prior to age 45 years predicted familial disease. In two of the three TERT mutation families, the pedigree appearance is consistent with genetic anticipation. In the other 25 FPF families negative for mutations in known PF genes, we did not identify other telomerase associated medical problems (bone marrow dysfunction, cirrhosis) and we hypothesize that there are novel PF genes segregating in our population.


Assuntos
Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doenças da Medula Óssea/genética , Estudos de Coortes , Feminino , Efeito Fundador , Estudos de Associação Genética , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação , Terra Nova e Labrador/epidemiologia , Proteína A Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/genética , Telomerase/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA