Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 15(29): 2823-2836, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241971

RESUMO

Aim: Evaluation of the biocompatibility and radiosensitizer potential of citrate-coated cobalt (cit-CF) and nickel (cit-NF) ferrite nanoparticles (NPs). Materials & methods: Normal fibroblast and breast cancer cells were treated with different concentrations of citrate-coated ferrite NPs (cit-NPs) and irradiated with a cobalt-60 source at doses of 1 and 3 Gy. After 24 h, cell metabolism, morphology alterations and nanoparticle uptake were evaluated. Results: Cit-CF and cit-NF NPs showed no toxicity to normal cells up to 250 and 100 µg.ml-1, respectively. Combination of cit-NP and ionizing radiation resulted in up to fivefold increase in the radiation therapeutic efficacy against breast cancer cells. Conclusion: Cit-CF and cit-NF NPs are suitable candidates for application as breast cancer cell radiosensitizers.


Assuntos
Neoplasias da Mama , Nanopartículas , Radiossensibilizantes , Neoplasias da Mama/tratamento farmacológico , Ácido Cítrico , Cobalto , Feminino , Compostos Férricos , Humanos , Níquel
2.
Nanomedicine (Lond) ; 14(23): 3075-3088, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31797726

RESUMO

Aim: The field of nanotechnology promotes the development of innovative and more effective cancer therapies. This work is aimed to develop a hybrid system that combines the capacity of boron nitride nanotubes (BNNTs) to be internalized by tumor cells and the ability of nickel ferrite nanoparticles to efficiently release heat by induced AC magnetic heating. Materials & methods: The systems studied were characterized by using x-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry and Mössbauer spectroscopy. Results: The ferrite nanoparticles attached to BNNT were able to achieve the required temperatures for magnetohyperthermia therapies. After cellular internalization, AC induced magnetic heating of BNNT@NiFe2O4 can kill almost 80% of Hela cells lineage in a single cycle. Conclusion: This system can be a highly efficient magnetohyperthermia agent in cancer therapy.


Assuntos
Compostos de Boro/química , Nanopartículas/química , Nanotecnologia/métodos , Nanotubos/química , Compostos Férricos/química , Células HeLa , Humanos , Níquel/química
3.
Chemosphere ; 159: 602-609, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27343867

RESUMO

Amphiphilic magnetic composites were produced based on chrysotile mineral and carbon structures by chemical vapor deposition at different temperatures (600-900 °C) and cobalt as catalyst. The materials were characterized by elemental analysis, X-ray diffraction, vibrating sample magnetometry, adsorption and desorption of N2, Raman spectroscopy, scanning electronic microscopy, and thermal analysis showed an effective growth of carbon structures in all temperatures. It was observed that at 800 and 900 °C, a large amount of carbon structures are formed with fewer defects than at 600 and 700 °C, what contributes to their stability. In addition, the materials present magnetic phases that are important for their application as catalysts and adsorbents. The materials have shown to be very active to remove the oil dispersed in a real sample of emulsified wastewater from biodiesel production and to remove methylene blue by adsorption and oxidation via heterogeneous Fenton mechanism.


Assuntos
Asbestos Serpentinas/química , Carbono/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Adsorção , Catálise , Azul de Metileno/química , Oxirredução , Análise Espectral Raman , Propriedades de Superfície , Difração de Raios X
4.
Nanoscale ; 4(22): 7155-60, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23069891

RESUMO

Compact rolled-up Co-Cu nanomembranes of high quality with different numbers of windings are realized by strain engineering. A profound analysis of magnetoresistance (MR) is performed for tubes with a single winding and a varied number of Co-Cu bilayers in the stack. Rolled-up nanomembranes with up to 12 Co-Cu bilayers are successfully fabricated by tailoring the strain state of the Cr bottom layer. By carrying out an angular dependent study, we ruled out the contribution from anisotropic MR and confirm that rolled-up Co-Cu multilayers exhibit giant magnetoresistance (GMR). No significant difference of MR is found for a single wound tube compared with planar devices. In contrast, MR in tubes with multiple windings is increased at low deposition rates of the Cr bottom layer, whereas the effect is not observable at higher rates, suggesting that interface roughness plays an important role in determining the GMR effect of the rolled-up nanomembranes. Furthermore, besides a linear increase of the MR with the number of windings, the self-rolling of nanomembranes substantially reduces the device footprint area.

5.
J Colloid Interface Sci ; 379(1): 84-8, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22608147

RESUMO

In this work, hybrid magnetic amphiphilic composites were prepared by the catalytic growth of carbon nanotubes (CNTs) and nanofibers CNF on layered silicates fragments. SEM, TEM, Raman, XRD, Mössbauer, TG/DTA showed that CVD with CH(4) at 800°C produced CNF and magnetic Fe cores fixed on the surface of microfragments of silicates layers. Due to the amphiphilic character, the composites can be easily dispersed in water and efficiently adsorb hydrophobic contaminant molecules. For example, the composites showed remarkable adsorption capacities for the hormone ethinylestradiol, e.g. 2-4 mg m(-2), compared to ca. 0.1 mg m(-2) obtained for high surface area activated carbon and multiwall CNT. These results are discussed in terms of a high hydrophobic exposed surface area of the CNT and CNF fixed on the layered silicates fragments surface. Moreover, the composites can be easily removed from water by a simple magnetic separation process.


Assuntos
Etinilestradiol/química , Magnetismo , Nanofibras/química , Nanotubos de Carbono/química , Silicatos/química , Tensoativos/química , Adsorção , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA